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Abstract

In recent years, several different approaches have been developed, to obtain deep point cloud

processing models that are robust or invariant to 3D rotations. This area of study is still

evolving very rapidly and there is no consensus on the best approach. In this work, we focus

on two independent subjects in the area.

Firstly, we compare different methods of using data augmentation to encourage rotation ro-

bustness in training. Related research works usually either use a single method of augmen-

tation, without many remarks, or set a goal of avoiding data augmentation altogether. We

design three easy-to-understand benchmarks of rotation robustness and use them to quanti-

tatively compare multiple augmentation techniques. Interesting empirical observations about

the benchmark scores are presented as conclusion.

Secondly, we investigate an existing rotation-robust architecture, the Spherical Fractal Con-

volutional Neural Network, in detail. We analyse its theoretical and empirical properties and

propose a number of modifications to the model, that are evaluated on a standard object

classification dataset. We demonstrate that our modifications yield a small improvement on

established classification benchmarks.

Approximate dissertation word count: 17154.
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Chapter 1

Introduction

1.1 3D Object Classification

Grouping objects into meaningful categories is one way in which humans abstractly think

about the world. The modern-era classification task asks to assign observations (inputs) to

the correct category, where ‘correct’ is usually impossible to define succinctly and depends

on notions intuitively understood by humans, such as ‘are those cells cancerous’ or ‘is there a

cat in this picture’.

3D object classification, the topic of this work, is one of the most tangible settings for the

classification task – it pertains to material things with well-defined shapes, which carry enough

information to put the object into one of the available categories.

A well established example is a self driving car’s task to understand whether what it has

spotted on the side of the road is a tree, a pedestrian, or perhaps a deer. Increasing the

challenge, the ‘artificial general intelligence’ of the future, as envisioned by most, would have

the capability to look at any object, not limited to a small number of classes, and describe it

in a meaningful way.

A similar task, though different in essence, is recognising a single object, unchanging in its

identity, given multiple different observations of it. This is key in modern mobile robotic

10



1.2. ROTATION INVARIANCE

Figure 1.1: A robot using a 3D scan of its surroundings to localise itself. A – in red: a recent
LiDAR scan of the robot’s surroundings; in white: a height-wise truncated version. B – a
premade map that the robot needs to place itself in. The visualisation features the Newer
College Dataset [1] and was made using RViz software [2].

navigation. Upon recognising a familiar landmark, a robot should be able to tell its current

location – that might be its main way of navigation, or it might be a useful resource in

correcting errors of other localisation methods, such as odometry, or GPS. A mobile robot’s

localisation attempt is illustrated in Fig. 1.1.

As is the case in numerous other fields of broadly understood artificial intelligence, modern

state-of-the-art approaches to 3D object classification also involve deep learning. Thus this

project entirely focuses on (supervised) deep learning methods.

1.2 Rotation Invariance

Consider a robot of the future walking around a parking lot and using its LiDAR sensor to

scan surrounding objects. It obtains two laser scans of two similar cars, saved in the robot’s

main coordinate frame. It so happens that in one of the scans, the car’s heading is aligned

with the robot’s x-axis, but in the other scan, it is aligned with the robot’s y-axis.

The robot ends up with two scans of very similar objects, but the two datasets it has collected

are quite different – they are only similar up to a rotation. As the makers of the robot, we

would want its object classifier to produce the same output – ‘it is a car ’ – for both scans.



CHAPTER 1. INTRODUCTION

The orientation of the scans is an arbitrary variable not related to the nature of the task. A

car is a car no matter which way the owner parked it, or what angle the robot is looking at

it from.

The rule that, however we rotate the input, we would want the output to be unchanged, is

referred to as rotation invariance of the 3D object classification task. This is an example of

domain knowledge – some abstract property of the problem that we are lucky enough to not

only understand abstractly, but also formulate mathematically, and therefore use. Not all

tasks concerning 3D objects are rotation invariant (e.g. determining whether a fish is alive).

While a perfect classifier should, by definition, classify both observations as cars, there is no

such thing as a perfect classifier, and in practice we may try to use our domain knowledge

to aid our algorithms, as opposed to feeding raw data into generic multi-purpose learning

algorithms, agnostic to whether they are consuming 3d data, word encodings, or discretised

audio signals.

The multi-purpose algorithm certainly has its merits – if two algorithms perform equally well

in all other aspects, then we would prefer the one, which requires less human intervention

to adapt to new problem domains. However, when interested in optimising performance in

a specific, frequently encountered task, it is natural to use all the knowledge available to aid

the algorithm.

Abstract domain knowledge of similar nature has in the past helped motivate the use of many

ground-breaking algorithms, such as the Convolutional Neural Networks (CNNs) [3] used with

great success for image analysis, and based on the understanding that spatial locality has an

important role in how humans interpret information from images.

1.3 Aims of the Project

The goal of our project is to investigate, qualitatively and quantitatively, methods of achieving

invariance or robustness to rotations in the setting of 3D object classification, in modern,

neural-network-based classifiers.



1.4. STRUCTURE OF THIS DISSERTATION

We study two very different ideas in detail and present our findings. The first one is data

augmentation – an extra step that can be applied to any supervised learning pipeline, which in-

volves modifying the training data that the model receives. We compare the effects of different

ways of augmenting the data, working with a point cloud architecture called PointCNN [4].

The second subject of study is a particular deep neural network architecture, the Spherical

Fractal Convolutional Neural Network (SFCNN) [5], which, by construction, encourages ro-

bustness to rotations. We analyse its performance and reactions to input rotations, as well as

proposing, defining, and evaluating original modifications to the model.

1.4 Structure of this Dissertation

Chapter 1 has introduced the project and its problem domain.

Chapter 2 contains the necessary project-specific background, assuming rudimentary famil-

iarity with machine learning. It introduces 3D object representations, the 3D point cloud

classification and description tasks, and the concepts of rotation invariance and data augmen-

tation. It also contains a brief introduction of the Spherical Fractal Convolutional Neural

Network model.

Chapter 3 presents existing deep architectures for 3D point cloud processing, introducing fun-

damental architectures of the field, as well as the most recent ideas geared towards obtaining

invariance or robustness to rotations.

Chapter 4 presents our investigation of different data augmentation methods for achieving

rotation robustness, on the example of a particular deep model (PointCNN). The experimental

results are presented at the end of that chapter.

Chapter 5 contains an in-depth presentation, analysis, and discussion of the SFCNN archi-

tecture, and our proposed modifications.

Chapter 6 presents the experiments performed with the SFCNN and our proposed modifica-

tions, and their results.
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Chapter 7 contains a brief summary of the project and outlines potential avenues for future

work.



Chapter 2

Background

2.1 3D Object Representations

To propose working scientific solutions to the 3D object classification problem, one must have

concrete representations to work with. Multiple alternatives have been conceived and utilised

in the last decades. While our work uses point clouds as inputs, related research has been

done using other representations, which we describe in this chapter.

For the purposes of this project, it is not essential to have a rigorous, generic, definition of

a 3D object, because we focus on the point cloud representation. It suffices to consider 3D

objects to be ‘sensible’ closed subsets of the Euclidean space R3.

2.1.1 Voxel Representations

A voxel grid is defined to be a regular grid, partitioning all of R3 into axis-aligned cubes

(voxels) of a fixed size.

Given a voxel grid, a 3D object can be represented as a mapping from voxels to values, such

as booleans (e.g. is the voxel occupied or not) or reals (e.g. what portion of the voxel is

occupied).

Finer voxel grids (with smaller voxels) preserve more information about the object’s shape but,

15



CHAPTER 2. BACKGROUND

Figure 2.1: Two voxelisations of a 3D model at different levels of detail. The model pictured
is table 0394 from the ModelNet40 dataset [10].

naturally, also take up more memory. An illustration of the same 3D model being represented

in voxel grids of different densities is shown in Fig. 2.1. A common extension of the voxel grid

idea is the octree data structure [6], in which select cubes may be subdivided further than

others, in order for the grid’s resolution to cost-efficiently adapt to the local complexity of the

data.

Due to their regular structure, voxel representations lend themselves easily to convolution-

based methods [7]. Voxels also find use in 3D data visualisation, used in diverse fields such as

medical imaging or computational fluid dynamics [8]. One common visualisation method is the

marching cubes algorithm [9], which converts volumetric data into easy-to-render polygonal

surfaces.

2.1.2 Surface Meshes

The key idea behind this representation is to define a 3D object by its boundary. Approxi-

mating the object’s boundary with a polygonal mesh yields the surface mesh representation.

An example is shown in Fig. 2.2a.

A finer mesh (with more faces) can approximate a complex 3D shape better, but takes more

memory to store.

A commonly used digital representation of meshes, employed e.g. in the computational geom-

etry C++ library CGAL [11], is the half-edge data structure [12], which stores vertices, edges,



2.1. 3D OBJECT REPRESENTATIONS

(a) The mesh from the original ModelNet40
dataset.

(b) The 2048-point point cloud representation
that we work with in this project

Figure 2.2: An example object from the ModelNet40 dataset [10] – night stand 001.

and faces of a mesh, together with the information necessary to traverse and manipulate the

mesh in meaningful ways, e.g. ‘iterate over neighbours of a vertex in clockwise order’ (‘clock-

wise’ being distinguished from ‘counter-clockwise’ by using the inside/outside distinction as

reference).

Surface meshes are a common choice nowadays for 3D rendering, be it for scientific shape

visualisation, the film industry, or video games. Colour textures and other surface properties

can be stored easily for mesh models.

Surface meshes can be extended to volumetric meshes, such as tetrahedral or hexahedral

meshes. Those have found use e.g. in materials engineering [13], for modelling tensions inside

a physical solid.

2.1.3 Point Clouds

A point cloud is defined to be an unordered set of points (x, y, z) in R3. It is the least struc-

tured representation amongst the ones mentioned in this section, as it contains no topological
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information, such as voxel adjacency, or mesh face adjacency present in the other representa-

tions.

If all points in a point cloud belong to the boundary of a certain 3D object, we call that cloud

a representation of that object. This definition is motivated by the 3D object classification

task – point clouds of real-life objects are usually obtained with scanners that detect the

objects’ surfaces. A point cloud representing a nightstand is shown in Fig. 2.2b.

One could also consider point clouds including points from the interior of the object, but it is

important to make the distinction, and in this work, we fix our focus on the boundary-type

representations.

Point clouds are commonly obtained using laser range finders. LiDAR (a portmanteau of

‘light’ and ‘radar’) sensors work by projecting laser beams into the environment and measuring

the distance to the nearest objects along the beam trajectories, by analysing the returning

reflected beams. Knowing the direction a beam was fired along, and the distance at which the

collision occurred, a point in space can be inferred where a surface must have resided at the

time of the measurement. Repeating the process rapidly for many different directions yields

a point cloud scan of the surroundings.

LiDAR scanners are often used by mobile robots as part of their perception systems, possi-

bly alongside video cameras or other sensors. The information sensed by LiDAR and video

cameras is different and the two systems can be used to complement each other. However,

successful LiDAR-only robot localisation has also been achieved [14], [15], [16].

LiDAR scanners can also be used to create point cloud scans of environments for other pur-

poses, such as construction work [17] or archaeology [18].

Clouds produced by LiDAR scanners often have some structure, an example shown in Fig. 2.3,

which shows a LiDAR scan of an urban environment, composed of a series of line scans, each

comprised of measurements taken along a vertical plane. This extra domain knowledge could

be incorporated into computer vision solutions designed to consume LiDAR data, but for

the purposes of this work we do not make any assumptions about origins of the clouds. In
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Figure 2.3: A point cloud obtained from a single LiDAR scan, taken from the Mathematics
Institute dataset (see Section 4.1.2). The measurement was taken in between urban buildings.

fact, clouds in the ModelNet40 dataset we work with (introduced in Section 4.3) have been

obtained artificially by sampling surface meshes.

2.1.4 Converting between representations

As mentioned previously, point clouds can be obtained from meshes by sampling their surfaces.

One canonical choice of the sampling method would be area-uniform sampling. That is how

the conversion illustrated in Fig. 2.2 was done.

Voxel grids can also be sampled to create point clouds. If one is interested in boundary-type

point clouds, then before sampling, one has to solve the problem of determining which voxels

belong to the boundary.

Point cloud data and surface meshes can both be discretised into voxels straightforwardly.

Voxels can be converted into surface meshes, the usual approach being the aforementioned

marching cubes algorithm [9].

Point cloud data can also be usefully aggregated into 2D images. One possible approach –

Bird’s Eye View – is to store height and density of a point cloud representation of terrain at
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each pixel of the ‘map’ image [19].

All approaches, that rely on quantising point clouds, require very high-resolution clouds in

practise, which are not always available. Another common problem is handling the holes

(gaps) in the quantised data, which arise from non-uniformity of the clouds.

2.2 Classification and Description

Classification and description are two related tasks, between which we like to distinguish for

the purposes of this project. While classification demands that an input be mapped to one

of predefined classes, description is a more general task, allowing for continuous output. The

distinction is made more rigorous below.

2.2.1 Classification

Classification is a standard setting, which can be defined abstractly as follows:

• A set of inputs X.

• A (countable) set of classes C.

• Classifiers f : X → C.

A famous example of a classification problem is the MNIST handwritten digits dataset [20],

where inputs – 28×28 greyscale images – need to be classified as one of the 10 decimal digits.

2.2.2 Metric Space Description

Consider the robot localisation scenario first introduced in Section 1.1. A robot keeps moving

around the world and it observes numerous objects in its environment. Its aim is to recognise

objects it has seen before (for the purposes of determining its location in the world – i.e.

localisation).

Having observed an object, the robot needs to map it to either one of previously seen objects,

or a special never seen this before response. While one could technically frame it as a classifi-
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cation problem in different ways, there is another, more natural framing for this task, utilising

the elementary mathematical concept of a metric space1. That is the description task :

• A set of inputs X.

• A metric space D of descriptions.

• Descriptors f : X → D.

• D’s distance function d : D ×D → R.

The aim of description is to extract useful features that can be matched to features of pre-

viously seen objects. The robot, equipped with a descriptor f , would describe the newly

observed object x, obtaining a description f(x), and then make its decision based on dis-

tances between f(x) and descriptions of previously seen objects. The assumption of the robot

would be, informally, that similar objects have similar descriptions.

No simple answer exists to how to deal with those descriptions. While it is obvious which of

the previously seen objects is most similar to the new one – being the one with least distant

description – there is no ultimate way of deciding when to return the never seen this before

response. That is usually decided using heuristics.

Remark. To link classification and description, it is useful to think about classification,

as implemented by most modern deep networks, as a description, followed by a block of

fully-connected layers and an argmax.

2.3 3D Point Cloud Description Methods

We have defined 3D point clouds as (unordered) sets of points in R3. Several design choices

have to be made for any point cloud descriptor (be it based on neural networks or not):

1Informally, a metric space is a set of points equipped with a distance function that maps pairs of
points to the distances between them. The distance function must satisfy some ‘intuitive’ assumptions,
for the space to be a metric space – nonnegativity, symmetry, the ‘triangle inequality’, and returning
0 if and only if the two points are equal.
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1. Whether to normalise the input cloud (to have mean 0 and variance 1) – this is dataset-

dependent. Absolute size may convey useful information, which could occur if we have

guarantees about sensor position relative to the object.

In methods where normalisation of the input is essential, such as deep learning, one

could process the normalised cloud, together with the original scale and mean inserted

as separate inputs.

2. Whether to allow for an arbitrary number of points – some descriptor designs might

require a fixed input size, e.g. a 256× 3 array of floats, for 256-point clouds. In those

cases, a bigger input cloud would usually be subsampled before being passed to such a

descriptor.

3. Whether and how to utilise any features that might come associated with the points.

Common such features include: intensity of the return LiDAR signal, surface normals,

or RGB colours of the surface at the point.

2.3.1 Classical Methods

Point cloud descriptors that do not involve neural networks have been devised and used

successfully. We refer to those as classical methods. Those can be looked at as geometric

metrics, or ‘handcrafted features’ in contrast with the machine learning approaches. Well

known classical descriptors used in robot localisation include:

• Eigenvalue-based features. Geometrically meaningful measures based on eigenvalues of

the 3× 3 covariance matrix of the point cloud. [21]

• Shape histograms. Ten histograms of various statistics, such as distances between ran-

domly selected point pairs, were used in a successful robot localisation algorithm Seg-

Match [22], together with the eigenvalue-based features.

• The 3D Gestalt Descriptor, based on aggregating point data in polar-coordinate bins

around selected key-points [23]. The Gestalt Descriptor was used successfully in map-

ping of an underground mine terrain [24]. One of its key features is invariance to cloud
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density.

2.3.2 Deep Learning Methods

In recent years, many state of the art results have been achieved in point cloud tasks, by neural-

network-based approaches, starting with the simple, foundational PointNet architecture [25],

which has since served as a baseline for more advanced methods.

A key architectural requirement is order-invariance, imposed by the definition of point-clouds

as unordered sets of points. Neural networks naturally receive inputs in ordered data struc-

tures (vectors, tensors) and thus order-invariance needs to be explicitly engineered.2

A literature review, covering both the PointNet and a multitude of more recent deep point

cloud descriptors, is presented in detail in Chapter 3.

2.4 Rotation Invariance in Point Clouds Tasks

2.4.1 Motivation

Consider two LiDAR scans of the same surface, taken by a mobile robot at two occasions,

from different viewpoints. (For now, we assume that the entire surface is visible both times.)

The goal of the robot would be to recognise the surface as one it has previously seen before,

in order to help the robot determine its current location. However, the two scans are not

trivial to make an association between. In this Section, we first consider how the two scans

may differ, and then describe how those differences can be eliminated in a principled way.

Firstly, there is the issue of differing coordinate systems – the robot would have likely been po-

sitioned and oriented differently in relation to the surface, when taking the two measurements.

That would result in a translational and rotational difference between the scans. Secondly,

the robot may have been at different distances, resulting in a difference in scales. Thirdly,

2Some architectures, such as PointCNN [4] (introduced in Section 3.2.1) are not order-invariant,
but still perform well on standard point cloud tasks. Rigorously speaking, such descriptors are not
deterministic functions of point clouds, but rather of point clouds with ordering.
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on a related note, the scan taken from further away (with the same finite-resolution scanner)

would have a lower density.

A simple normalisation step – setting the mean to 0 and variance to 1 (variance being the

mean squared distance of points to origin) removes the translational and scale differences.

Subsampling (deleting a subset of the points) can be used to alleviate the density disparity.

The only remaining difference left after applying the aforementioned steps is the difference

in orientation. Keep in mind, that the two concrete point clouds do not only differ by a

rotation. Different points on the surface were likely scanned at each attempt. For example,

when scanning a person twice, one scan might miss the person’s nose, while the other would

not, just because the number of laser beams used is finite. Therefore, given just the point cloud

data, there is no principled, exact way to recover the rotation by which the two underlying

shapes differ.

This observation motivates interest in rotation-invariant descriptors, i.e. ones whose output

does not change when a rotation is applied. Using such a descriptor would alleviate the final

major remaining issue – the difference in orientation between the two scans.

2.4.2 Definitions

Definition. SO(3) denotes the group of all 3D rotations about the origin.

Definition. A 3D point-cloud descriptor f : P → D, where P is the set of all 3D point-clouds,

is said to be rotation-invariant if and only if, for all rotations R ∈ SO(3) and all clouds

P ∈ P, there is f(RP ) = f(P ).

2.4.3 Remaining Difficulties

It must be noted that a rotation-invariant descriptor by itself does not resolve all problems

encountered in practice by robots attempting localisation.

Firstly, and trivially, the descriptor still needs to be useful and extract the task-relevant

information from its inputs – e.g. by putting two objects close to each other in the description
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space when they are ‘similar’ for the purposes of the task at hand. It needs to be robust to

noise – small variations of the input point positions. Rotation-invariance without further

guarantees is useless in itself.

Secondly, in some practical settings the objects of interest may be scanned from all the sides,

but common scenarios, such as robot localisation, or vision for self-driving vehicles, involve

only seeing objects from a single side. For example, a scan of a person from the front has a

very different shape than a scan of the same person taken from the side.

Thirdly, in scenarios such as the two mentioned above, objects may be partly occluded by

other things appearing between the object and the sensor.

Furthermore, in all of the above discussion, we have already assumed that we have a point

cloud corresponding to an object we want to describe or classify. In practice, scans made

by sensors contain many different objects in semantic sense, and need to be partitioned into

‘per-object clouds’ first. That is an area of active research, referred to as segmentation.

2.5 Supervised Machine Learning and Data Augmentation

2.5.1 Supervised Machine Learning in a Nutshell

In short, a supervised machine learning algorithm receives labelled examples of data and,

based on those, produces a function ready to consume more data of that type.

In the point cloud classification setting, a training set of point clouds with their corresponding

true classes would be provided. A source of the truth must exist – in classification, that source

is usually humans manually labelling each input. Based on the information contained in the

training set, the machine learning algorithm would produce a classifier function, which can

later be applied to (previously unseen) inputs.

In the description setting for robot localisation, the ground truth labels are better interpreted

as ‘object indices’, rather than classes. In general, ground truth for supervised machine

learning can also take different forms than a collection of (input, label) pairs.
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2.5.2 Training Neural Networks with Gradient Descent

The machine learning methods discussed in this dissertation are all based on neural networks –

a family of functions parametrised by real-valued weights. We assume the reader’s rudimentary

familiarity with neural networks.

Recall that the basic way of training neural networks is backpropagation:

1. A batch3 of inputs is fed into the neural network, which produces some outputs (e.g.

descriptions, or class-probabilities which could be argmax-ed to predict a class).

2. A loss function computes a real-valued loss based on the labels and network’s outputs.

3. The trainable parameters of the network are updated according to the gradient of the

loss w.r.t. those parameters. While basic gradient descent just updates the weights along

the current gradient (wi+1 := wi−η ·∇wiL(wi))
4, higher-order methods are usually used

nowadays, with the commonly used Adam optimiser [26] being a prime example.

2.5.3 Relevant Loss Functions

This section presents some common loss functions for classification and description problems.

Loss functions can be looked at as proxies between the mathematical formulation of our

(neural network) function and the final goal we have in mind.

For example, while we are usually ultimately interested in optimising a classifier’s accuracy,

in order to get the gradients that we need for backpropagation, we perform a trick. We have

the network produce intermediate values – class probabilities – from which the final prediction

can be derived (using argmax). Those intermediate values are engineered to be differentiable

functions of the input – as opposed to the value of classification accuracy – and are passed into

a (differentiable) loss function. Finally, the gradient of the loss with respect to the weights of

the network can be obtained and used to perform a training step.

3Often referred to as mini-batch, when only a subset of the training set is processed between training
steps. In this work, we use the word batch, referring to mini-batches.

4Here, wt denote the network’s weights at training step t ∈ Z, η denotes the step size parameter,
L denotes the loss function and ∇wi is the gradient operator w.r.t. wi.
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Definition. Cross-entropy loss. Classifier networks for a problem with C classes are

usually constructed to output C class probabilities pc – non-negative numbers that sum to 1.

When using a trained network to predict a single class, the argmax of those would be taken.

During training, the numbers pc can be used to compute the differentiable cross-entropy loss,

equal to − log py, where y is the true class.

Consider the robot localisation setting for descriptors again – a robot may see an unbounded

number of objects, some of them in multiple observations, in which case the robot’s goal is to

detect the repetition. That can be seen as a classification task with a dynamic, unbounded

number of classes (objects). A different loss function is needed – the cross-entropy loss cannot

be used in practice, as the number of class probabilities pc would keep growing without a

bound.

The idea behind the pairwise and triplet losses introduced below is to try to force the de-

scriptions of objects to form clusters in the description space (also referred to as feature space

further on). That means that any two descriptions of the same object should be close in

feature space, while any two descriptions of different objects should be far away (relatively).

See Fig. 2.4 for an example of clustering.

Definition. Pairwise loss is defined to be the sum of distances of all pairs of inputs in the

batch that belong to different classes.

Definition. Triplet loss is defined to be a sum over all triples of input clouds (a, p, n) in the

batch, for which the ‘anchor’ a has the same class as the ‘positive’ example p and a different

class than the ‘negative’ example n. Given a distance metric d over the feature space, the

triplet loss is: ∑
(a,p,n)

max

{
1− d(a, n)

d(a, p) + ε
, 0

}
. (2.1)

The purpose of the triplet loss as defined in Eq. 2.1 is to penalise all triplets, in which the

negative example is closer to the anchor than the positive example. The effect of a non-zero

margin variable ε is that the loss also penalises anchors a, for which n is only slightly further
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(a) (b)

(c) (d)

Figure 2.4: Class clustering visible in feature spaces of two different descriptors (top and bot-
tom) trained using a combination of pairwise and triplet losses. Different colours correspond
to different classes of input clouds. The high-dimensional feature space was mapped into
two dimensions for this plot using standard Principal Component Analysis (PCA). One can
see the clustering become stronger as training progresses (left to right). The fact that some
classes overlap does not indicate a failure of the classifier, as this is merely a 2D projection of
the feature space.
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away from a, than p is.

The intuitive meaning of the margin is related to that in the Support Vector Machines

(SVMs) [27], though many differences are present, e.g. the margin is a constant and not

a subject of optimisation, and it represents a ratio of distances, as opposed to a feature-space

distance, as in SVMs.

We use ε := 0.01 as the margin value, found to work well empirically. It is important to note

that Eq. 2.1 defines one particular variant of triplet loss. Slightly different formulations, all

based on (anchor, negative, positive) triplets, can be found in the literature under the same

umbrella name ‘triplet loss’.

2.5.4 Data Augmentation

Data augmentation is a generic method of aiding supervised training by generating new la-

belled data from pre-existing data.

Domain knowledge can be used to systematically generate new data. For example, the MNIST

handwritten digit classification problem is translation-invariant (as long as the translation does

not shift the digit out of the image). What that means is that applying a small translation

to the input should not change the output (class) of the classifier. Similarly, the 3D object

classification problem is rotation invariant.

A data augmentation step could then involve taking existing MNIST input images and ap-

plying translations to them to create new training examples, and we know, by our domain

knowledge, that the classes of those inputs would be unchanged. Similarly, one could take

labelled 3D objects and rotate them while preserving the label.

Data augmentation by itself does not guarantee that the trained network will be invariant –

it may cause the network to become more robust to the transformation at hand, and often

works well in practice, as also observed in our experiments (see Chapter 4).

Undeniably, augmentation is a way of cheaply (i.e. without need for experts to provide labels)

generating extra meaningful training data for the network to learn from, and thus generally
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improves generalisation of the trained models.

Finally, data augmentation can go beyond applying hand-crafted transformations to inputs

and labels. Neural approaches to generating the augmented data have also been studied [28],

including the use of the well-known Generative Adversarial Networks (GANs) [29].

2.6 The Spherical Fractal Convolutional Neural Network

2.6.1 Introduction

The Spherical Fractal Convolutional Neural Network (SFCNN) is a graph-convolution-based

deep architecture for point cloud classification5, introduced by Rao et al. [5]. We present its

details in Chapter 5.

The SFCNN has set a new state of the art on the ModelNet40 object classification bench-

mark [5] (presented in more detail in Section 6.1). While it is not exactly rotation invariant,

its design leads to strong robustness against rotations. It performs exceptionally well on the

test set containing previously unseen rotations, compared to other methods.

2.6.2 Role of the SFCNN in Our Project

We implement, train, and evaluate the SFCNN model. Full reimplementation was necessary,

as we have not obtained a reference implementation from the authors. We also discuss the

architecture’s rotation robustness and derive a version that is provably rotation invariant

(under certain idealistic assumptions).

Furthermore, we spot and quantitatively confirm that the SFCNN model tends to disregard

a large percentage of input points. As an original contribution, we address this by proposing

two alternative modifications of the model. We implement and evaluate both.

5The authors also show how to use it for point cloud segmentation, using an encoder-decoder
architecture. The segmentation task is outside the scope of this dissertation.
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Related Work

3.1 Point Clouds meet Deep Learning – The PointNet

3.1.1 Architecture

The PointNet architecture introduced by Qi et al. [25] is the first deep neural network spe-

cialised for point cloud processing. The authors demonstrate its usefulness for both classifi-

cation and segmentation of point clouds.

Recall that a 3D point cloud is defined as an unordered set of points (xi, yi, zi). However,

practical implementations of neural networks consume ordered data in the form of vectors

or, more generally, tensors. Therefore, it is a non-trivial requirement that an architecture for

point cloud processing be invariant to the order in which the points are input.

The key idea behind PointNet’s order invariance is expressed by the following equation:

f({x1, . . . , xn}) = h(g(x1), . . . , g(xn)), (3.1)

where h is a symmetric function, i.e. one invariant to permutations of its n inputs.

The PointNet is based on a simple instantiation of Eq. 3.1. It implements g with a shared

31
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Multi-Layer Perceptron (MLP), and uses maxpooling for as the symmetric function h. In

words, for each point pi of a cloud, the same MLP is applied, mapping its 3D coordinates

(xi, yi, zi) onto a vector fi in a higher-dimensional space. Then, a point-wise maximum is

taken over all fi, yielding an order-invariant description of the point cloud.

In addition, the PointNet also incorporates an attempt at instilling invariance to rigid trans-

formations of the input. The authors state, as motivation, the goal of achieving stable seg-

mentation. An affine transformation matrix is predicted for each input cloud – with the goal

of aligning the input into a canonical coordinate system – and applied before the description

begins. An analogous step is also repeated in feature space, between two MLPs. The trans-

formation matrices are performed using Joint Alignment Networks, which also utilise MLPs

and maxpooling.

3.1.2 Results

The PointNet achieved state of the art in the ModelNet40 classification task [10], and out-

performed a convolutional, voxel-based baseline, as well as previous classical solutions, on a

ShapeNet [30] segmentation task proposed in [31].

In an ablation study, the authors demonstrate that the Joint Alignment Networks help improve

classification accuracy of the network. However, no explicit comments are made on the level

of invariance the trained models have to rigid transformations. The authors experimentally

confirm robustness of the network to changes in point cloud density and random noise.

Furthermore, a universal approximation theorem about the PointNet architecture is proved,

demonstrating the PointNet can learn to approximate any continuous function acting on

point clouds. Such theorems are commonly proved in deep learning research to support newly

introduced architectures.

Both the experimental and theoretical results affirm that the PointNet is a simple, yet robust

and powerful, novel architecture. The good results served as motivation form further research

of deep networks acting directly on point clouds.
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3.1.3 PointNet++

While the PointNet outperformed a 3D-convolution-based voxel approach, its lack of regard for

local structures is likely still a disadvantage. Combining the hierarchical idea of convolutional

networks with the PointNet architecture, Qi et al. proposed the PointNet++ [32].

The PointNet++ model is composed of multiple layers. Each layer takes in a set of points

in an n-dimensional space, each point possibly endowed with a feature vector. The initial

layer would consume the original input cloud, and beyond that, each layer would consume

the output of the previous layer. Each layer consists of the following stages:

1. A set of centroid points is chosen amongst the input points, using a furthest-point sam-

pling method, which results in centroids that cover the entire input cloud approximately

uniformly.

2. For each centroid ci, a subcloud of the input cloud is chosen, by selecting nearest neigh-

bours of ci.

3. For each centroid, the corresponding subcloud is described using a PointNet, and the

resulting feature vector fi is passed on to the next layer, at the position ci.

Thus, the number of points processed at the next layer can be reduced, analogously to how

2D image-processing convolutional networks often reduce the image resolution across the

consecutive layers.

The authors show that the PointNet++, with its hierarchical structure, is an improvement

over the basic PointNet. It achieves significantly better results (having established new state

of the art scores) on ModelNet40 [10] and MNIST1 [20] classification tasks.

1The MNIST dataset can be used to generate 2D point clouds by sampling the surfaces of the
handwritten digits.
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3.2 Convolutions on Point Clouds

While the PointNet++ architecture provides an example of a point cloud architecture able

to process local structures, it does not use learned convolutions, which have proved highly

successful in many other applications of deep learning. However, other architectures exist,

that employ convolutions for point cloud processing in various ways.

3.2.1 PointCNN

The key idea behind the PointCNN architecture [4], is to learn so-called X -transformations,

that map point clouds into ordered spaces Rn, where usual convolution operators can be

applied. The X -transformations would ideally preserve the shape information of a cloud,

while being order-invariant. They are implemented using Multi-Layer Perceptrons (MLPs)

by Li et al., consuming both the point coordinates, and associated feature vectors. While the

X -transformations learned in practice have been found to not exhibit the aforementioned ideal

properties [4], the PointCNN has, nevertheless, outperformed state of the art on numerous

well-established classification and segmentation benchmarks.

The hierarchical structure of PointCNN resembles that of PointNet++ – a number of rep-

resentative points are selected from the input cloud, and then the neighbourhoods around

those key points are all processed with a shared transformation. In the case of PointCNN,

the shared transformation is an X -transformation, followed by a classical convolution – both

steps together are referred to as an X -convolutional layer.

Each X -convolutional layer can be parametrised by the following 4 parameters, designed by

Li et al.:

• K – size of the subcloud selected for each representative point

• D – a dilation factor – the K points are selected at random out of the K · D nearest

neighbours of the representative point (for D = 1, that reduces to the standard nearest

neighbours approach)
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• P – number of output (representative) points

• C – dimensionality of the output features

To apply a PointCNN network to a classification task, the authors compose a number of

X -convolutional layers, followed by a number of fully-connected layers.

3.2.2 Classical Grid Convolutions

Classical grid-based 2D and 3D convolutions can be applied to point cloud problems by

converting them into other, grid-based, representations. As mentioned in Section 2.1.4, point

clouds can be converted to a voxel representation by aggregating the point information into

cells of a discrete voxel grid, or an octree (see Section 2.1.1). A convolutional approach for

point cloud segmentation and classification, has been proposed by Riegler et al. [7].

Point cloud data can also be aggregated into 2D images, enabling the use of thoroughly studied

image-processing convolutional neural networks. For example, Ku et al. [33] use the Bird’s

Eye View (BEV) representation [19] of LiDAR clouds, coupled with RGB camera images, for

object detection in self-driving cars. The BEV representation projects a point cloud onto a

horizontal plane partitioned into a pixel grid. Each pixel is then assigned features based on

the maximum height, number of points in that pixel (density), and reflectance of the highest

point (intensity). This lossy representation has been proven useful in conjunction with other

representations.

3.2.3 Graph Convolutions

Ideas from Graph Convolutional Neural Networks, rising in popularity in recent years, have

also been applied to point cloud processing. Wang et al. [34] introduced their Dynamic Graph

Convolutional Neural Network (DGCNN) architecture, composed of EdgeConv operations.

Those, at each step, aggregate features of a graph vertex’ neighbours into a single feature

vector, in an order-invariant way.

For use with the DGCNN, a point cloud is converted into a graph by introducing edges
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between nearest-neighbour points in the cloud. The other key idea of the DGCNN is that

the neighbourhood graph be recomputed after each convolutional step, using feature-space

neighbourhoods. This way, the DGCNN can exploit both spatial locality and semantically

meaningful long-distance relations (feature-space locality).

In a theoretical observation, Wang et al. show that the PointNet [25] is a special case of

DGCNN. Their DGCNN outperformed state of the art results on the ModelNet40 classifi-

cation task [10], including the scores achieved by the PointNet [25], PointNet++ [32], and

PointCNN [4] architectures mentioned previously in this Chapter.

Finally, Li et al. [35] show how to improve Graph CNNs, by transferring techniques used

in other branches of deep learning to enable successful training of deeper networks. Those

techniques are residual connections [36], dense connections [37], and dilated convolutions [38].

They use the DGCNN as their baseline, and improve upon its performance at a segmentation

task, by constructing similar, but deeper, graph convolutional networks.

3.3 Handcrafted Rotation-Invariant Features

The previous Sections describe a number of successful point cloud architectures, not concerned

with rotation invariance. The original PointNet’s Joint Alignment Networks were posited to

encourage invariance to affine transformations, which include rotations, and while the presence

of those modules has helped improve the PointNet’s performance, no tests of robustness or

invariance were reported on.

The following Sections focus exclusively on architectures that are robust or invariant to rota-

tions.

Consider the following toy representation: a cloud’s centre of mass m is computed, and then

for each point pi, its coordinates (xi, yi, zi) are replaced with a single number denoting the

distance between pi and m. That representation of a cloud is fully invariant to rotations of the

input, because rotations preserve distances. An arbitrary architecture can be applied to the

resulting one-dimensional representation, and would always yield a rotation-invariant output.
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While that toy representation likely discards too much information to compete with state of

the art models, a stronger rotation-invariant representation, similarly hand-crafted, exists.

It was discovered by Chen et al. [39] and named the Rigorously Rotation Invariant (RRI)

representation. The key theoretical result proved about the RRI representation is stated in

the following Theorem:

Theorem 1. The RRI representation loses no information about the point cloud, other than

its absolute orientation, under a mild assumption.

This is saying that the original point cloud can always be reconstructed from its RRI repre-

sentation (under the aforementioned mild assumptions, which we elaborate on later), up to a

rotation – which is perfect, in the context of rotation-invariant representations.

The RRI representation of a 3-dimensional point pi is a (3k+ 1)-dimensional vector, where k

(a hyperparameter of the model) is the number of nearest neighbours selected for each point

of the cloud. The vector consists of ri, i.e. the magnitude of pi as a vector, and k triples

(rij , θij , φij), one per a neighbour pij of pi, where:

• rij is the magnitude of pij , i.e. its distance from origin,

• θij is the angle between the vectors pi and pij ,

• φij requires a longer explanation. Consider projections qij of points pij onto the plane

that passes through the origin and is perpendicular to pi. Ordering those projections

clockwise (with pi pointing ‘up’), φij is the angle between qij and whatever projection

qil (for some l 6= j) precedes it.

As Theorem 1 states, that representation of a point cloud is lossless, under a mild assumption.

That assumption is that the graph of k nearest neighbours is strongly connected, i.e. one can

get from any point pi of the cloud to any other point pj in a finite number of steps, each step

leading from a point to one of that point’s k nearest neighbours.

This assumption becomes trivially true when k is equal to the size of the point cloud, but can

also hold for smaller values of k. Furthermore, the authors discovered that even decreasing



CHAPTER 3. RELATED WORK

the value of k low enough, that 25% of the clouds from the ModelNet40 dataset do not satisfy

the connectedness condition, does not decrease the model’s performance drastically (although

there is an observable decrease).

Chen et al. use RRI in conjunction with a custom hierarchical architecture (ClusterNet),

and achieve state of the art on the variants of the ModelNet40 classification task that favour

rotation-robust models most2.

Another hand-crafted representation, weaker than the RRI, has also been used successfully.

PPF-FoldNet [40] is an autoencoder architecture that learns rotation-robust representations of

point clouds in an unsupervised manner. Before further processing (based on the FoldingNet

architecture [41]), the architecture converts input clouds into Point-Pair Feature (PPF) rep-

resentation, also encoding distances and angles amongst local sets of points, similarly to the

RRI. The representations learned by the PPF-FoldNet are not exactly rotation-invariant but

exhibit strong robustness to rotations and achieve a new state of the art on the 3DMatch

benchmark [42].

Zhang et al. [43] have devised an architecture which applies 1D convolutions to data derived

from another rotation-robust representation of points, based on distances and angles. They

have defined a ‘rotation invariant convolution’ operator, which can be stacked, similarly to

convolutions in classical Convolutional Neural Networks. Their model exhibits very high

robustness to rotations, demonstrated on the ModelNet40 classification benchmark.

3.4 Rotation Equivariance

A mapping φ is equivariant to rotations, if applying a rotation R to any input transforms the

output in a predictable way (denoted TR), depending on that rotation R. This property is

conveyed concisely by the following equation:

2We are referring to the SO(3)/SO(3) and z/SO(3) classification accuracy benchmarks, as intro-
duced in Section 6.1.
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φ(Rx) = TR(φ(x)) (3.2)

Equivariance is a generalisation of invariance (which corresponds to TR = id for all R).

Equivariant operators can be used to construct architectures robust to rotations, as showcased

by Worrall & Brostow’s voxel-processing architecture – CubeNet [44].

The authors use the group convolution operator, which effectively introduces an extra (finite)

dimension to be convolved over, corresponding to elements of a finite group. They prove

mathematically that group convolution is equivariant to the actions of that group. Worrall

& Brostow train their CubeNet – an architecture composed of multiple Group Convolution

layers, followed by a fully-connected block – using a small group of 4 3D rotations, known

as Klein’s Vierergruppe V 3. They found the four-group to outperform the larger tetrahedral

group T4 (12 rotations), and also to be preferable to the Cube Group (24 rotations), which

was too large to be used in training effectively.

The CubeNet, using V -group convolutions, achieved state of the art results (amongst voxel

architectures) on the ModelNet104 classification task [10], and comparable to state-of-the-art

results on a biological volume segmentation dataset, the ISBI 2012 Challenge [45].

Another work by Worrall et al. [46] introduces Harmonic Networks – 2D image processing

networks, equivariant to all (infinitely many) 2D rotations. Harmonic Networks are based on

convolutions5 with complex harmonic spherical filters of the form:

Wm,β,R(r, θ) = R(r) · ei(mθ+β), (3.3)

where (r, θ) are polar coordinates, R is a real function of the radius known as the radius profile,

3Also known as the four-group, it is the smallest non-cyclic group of 3D rotations, meaning that it
is not merely generated by composing a single rotation with itself a varying number of times.

4The ModelNet10 is a smaller dataset, containing a subset of the ModelNet40 models, with all
shapes of a single class aligned with each other.

5Or more precisely, cross-correlations. The two operations have similar definitions and are often
both referred to as convolutions in scientific writing.
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m ∈ Z is known as the rotation order, and β is a phase offset term. Convolutions with those

harmonics are are provably rotation-equivariant. The authors note the equivariance alleviates

need for data augmentation. Indeed, Harmonic Networks were shown to achieve state of the

art on a rotated MNIST [20] benchmark, outperforming, amongst other approaches, data-

augmented Convolutional Neural Networks.

A generalisation of the Harmonic Networks to three dimensions has been successfully imple-

mented by Cohen et al. [47] in their Spherical CNNs, and later, in similar work by Thomas et

al. [48] in Tensor Field Networks. Cohen et al. perform spherical correlations – an analog of

classical 2D convolutions, that replaces 2D translations with 3D rotations. They implement

an efficient way of computing the spherical correlations, based on the Fast Fourier Transform.

The resulting architecture is equivariant to all 3D rotations and achieves competitive results

on object recognition benchmarks. To apply their architecture, Cohen et al. map input

meshes onto spheres, and proceed applying spherical correlations.

3.5 An Alternative Approach – Alignment Preprocessing

An alternative to rotation-robust or -invariant architectures is to rotate the inputs into a

canonical orientation, in a preprocessing step. For example, the SegMap robotic localisation

pipeline [15] aligns the principal axis6 of the input cloud to the x axis, assumes the z axis, cor-

responding to the direction of gravity, should remain unchanged7, and resolves the remaining

ambiguity using a hand-crafted heuristic, maximising the density of the part of cloud located

in a certain halfspace of R3.

Preceding the description step with this kind of alignment was found to be a valid method

for SegMap’s authors’ applications. However, used in conjunction with fast descriptors, the

running time of the alignment step may become the architecture’s bottleneck, slowing down

6Directions of the eigenvectors, found with 2D Principal Component Analysis, ordered by the
magnitude of their eigenvalues.

7That is because SegMap is designed for mobile robots, and those can measure the gravity vector
with hardware, and align the z axis of their scans to that.
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the forward-pass time, critical in real-time applications.

Additionally, the alignment step is not guaranteed to be stable – the rotation found by the

alignment process may change abruptly due to small variations of the input. That results in

lower robustness to input noise than that exhibited by rotation-invariant neural networks. As

mentioned in Section 2.4.1, a perfect alignment method does not exist, and therefore rotation-

invariant networks, robust to input noise, seem to be the preferable research direction.



Chapter 4

Data Augmentation for Rotation

Invariance

4.1 Issues with Non-Rotation-Robust Models

4.1.1 Natural Segmentation and Matching (NSM)

The motivation for our study of data augmentation comes from problems observed by the

authors of the Natural Segmentation and Matching (NSM) robot localisation algorithm [14].

NSM is used by a robot with the purpose of localising its current pose (position and orien-

tation) in a prior map, based on the robot’s recent LiDAR readings. The map consists of

a number of scans (or more concise descriptions of the scans) taken at previous times, each

with an associated robot pose, at which the scan was taken. The task of NSM is to predict

the robot’s current pose, relative to the map, given its most recent observation.

The NSM pipeline is composed of multiple stages, listed below. Also see Fig. 4.1 for a

visualisation.

1. A pre-filtering and segmentation of the point cloud representing the surroundings.

2. Description of the segments using a trained PointCNN network [4].

42
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Figure 4.1: The NSM pipeline illustrated. A – in red: an example input cloud; in white: the
input cloud truncated along the z-axis to remove the ground and ensure consistent segment
height. B – the segmented input cloud. C – the (segmented) map to localise in. D – six input
segments that were matched to segments of the map in a geometrically consistent way. The
matchings are illustrated with the white lines. E – the red arrow to the left of the letter ‘E’
marks the estimated pose of the robot in the map’s coordinate frame.
This visualisation features the Newer College Dataset [1] and was made using RViz software [2].

3. A geometric consistency test, which receives candidate matches of the form (map seg-

ment, observed segment), based on the PointCNN features, and attempts to find a large

enough number of matches that are all geometrically consistent. That means there

should exist an isometric1 transform that maps the coordinate frame of the robot onto

the coordinate frame of the map, so that each (matched) observed segment is mapped

onto its matching map segment.

4.1.2 Dataset

NSM has been tested on a LiDAR dataset collected by the Dynamic Robot Systems Group

at the Mathematics Institute campus in Oxford. The dataset consists of a map, composed of

791 LiDAR scans, covering the entire area (see Fig. 4.2a), and test observations (example in

Fig. 4.2b) from another round of scanning (the scans were obtained by a sensor traversing the

area in loops). The objective is to determine the correct pose in the map’s coordinate frame,

1An isometry is a distance-preserving transformation.
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(a) The map included as part of the Math-
ematics Institute dataset. The aim of a lo-
calisation algorithm would be to determine
the pose in this map that a given LiDAR
measurement has been taken from.

(b) In red: an input cloud given to NSM. In white:
the input cloud trimmed to remove the ground and
ensure consistent height of the segments as a normal-
isation step. In colour, above: the result of segmen-
tation performed by NSM.

Figure 4.2: The NSM localisation algorithm running on the Mathematics Institute dataset.
Visualisation made in robotics software RViz [2].

from which a given test observation was taken.

4.1.3 Quantitative Analysis

It has been noticed that NSM struggles for test observations taken at a significantly different

angle than the map scans. At the beginning of this project, we have implemented a benchmark

to see how well exactly NSM handles rotations of the test segments. The data collected in

Fig. 4.3 shows that NSM’s rate of successful localisations deteriorates drastically when all the

test segments are rotated about the z (vertical) axis by the same angle, except for rotation

angles close to 0◦ or 180◦.

These results motivate the investigation of data augmentation, as the NSM is implemented in

a modular fashion, which allows us to swap out the non-rotation-robust PointCNN descriptor

for a different one – e.g. a version of the same descriptor trained with data augmentation.
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(a) Success rate for knn=5. (b) Success rate for knn=21.

Figure 4.3: Success rate of NSM for rotated inputs on the Mathematics Institute LiDAR
dataset, plotted as a function of the rotation angle.
The data is collected over 70 test clouds. Two different values were provided for the knn pa-
rameter of the geometric consistency module, which determines how many candidate matches
are considered. Larger parameter values trade off the increase in running time for an improved
success rate.
180◦ rotations are handled well – that is because the segments in the dataset tend to be flat
pieces of walls, and thus do not change much when a 180◦ rotation is applied.

4.2 The Subject of our Study

Data augmentation, as introduced in Section 2.5.4, means automatically generating new la-

belled training examples based on existing data. By adding rotated versions of inputs into

the training set, with the same labels as the original clouds, one can encourage deep models

to learn to be robust against rotations.

It is important to understand that, in general, data augmentation gives no hard guarantees

about properties of the learned model.

The natural way of using data augmentation for rotation robustness is to sample and apply

a random rotation each time a training cloud is fed into the model. An alternative paradigm

would be to generate a finite number of new inputs at the start, and then iterate many times

over that augmented training set.

For our study, we stick to the first paradigm, with one slight generalisation, discussed later,
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Figure 4.4: Nine example point clouds from three different classes in the ModelNet40 dataset,
in their original orientation and scale. Left to right: two chairs, three lamps, and four humans.
Considerable in-class variability is exhibited – the humans are in different poses, the lamps
and chairs have significantly different shapes. Each of the clouds contains 2048 points and
comes with the centre of mass shifted to the origin and variance (i.e. mean distance of points
to the origin) normalised to 1.

where the rotations used in a single training batch are not all pairwise independent. We test

multiple different distributions of rotations, and compare the reaction of the trained models

to input rotations, using custom benchmarks.

4.3 The ModelNet40 Dataset

The primary dataset we use in this project (both for the study of data augmentation, and the

SFCNN) is the ModelNet40 dataset [10] – one of the most common benchmarks for 3D object

classification methods. The dataset contains 12308 three-dimensional meshes representing

‘everyday life’ objects from 40 different classes, such as airplane, keyboard, plant, or table.

The dataset contains different numbers of objects of different classes.

For our project, we have used a publicly available2 version of ModelNet40 with point clouds

of size 2048 sampled from the meshes. Some example clouds are shown in Fig. 4.4.

2https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip

https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip
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Layer K D P C

1st 8 1 −1p 48

2nd 12 2 384 96

3rd 16 2 128 192

4th 16 3 128 384

Table 4.1: Configuration of the PointCNN model we use in our study of augmentation meth-
ods. For the meaning of K,D,P,C, refer to Section 3.2.1.
pThe −1 given as value of P indicates that the number of output points of a layer is the same
as the number of its input points – in other words, all points are selected as representatives.

The dataset was used in a 9840:2468 (80%:20%) training/testing split, following the original

SFCNN paper [5].

4.4 The Descriptor

We apply the various data augmentation routines to the training of a PointCNN [4] model

(see Section 3.2.1) on the ModelNet40 dataset.

Our PointCNN descriptor is trained with a sum of triplet loss and pairwise loss (see Sec-

tion 2.5.3), which encourage clustering of the input clouds in feature space according to their

true classes. We use the same PointCNN model configuration, as previously used by the

authors of the PointCNN paper [4] for their ModelNet40 classification experiment. The con-

figuration can be found on the PointCNN author’s public repository3. The model contains 4

X -convolutional layers, with parameters listed in Table 4.1. The only difference between our

model and the one used by Li et al. is that, instead of a 40-class classifier, we are training a

16-dimensional descriptor – that is achieved by changing the shape of the final fully-connected

layer.

The network has approximately 600k parameters and training it with a batch size of 128

requires 8954MB of GPU memory.

3https://github.com/yangyanli/PointCNN/blob/master/pointcnn_cls/modelnet_x3_l4.py

https://github.com/yangyanli/PointCNN/blob/master/pointcnn_cls/modelnet_x3_l4.py
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4.4.1 Computational Resources

Our research group, the Dynamic Robot Systems Group at the Oxford Robotics Institute,

has provided us with a work laptop, as well as remote access to one of the institute’s com-

puters with an NVIDIA Titan V GPU (12GB of RAM). The development and evaluation has

primarily taken place on that machine (via ssh).

The Oxford Robotics Institute has also provided us with access to the JADE (Joint Academic

Data Science Endeavour) high-performance computing cluster4, where some of the training

for our project was run using JADE’s job scheduling system slurm [49].

4.5 Rotation Robustness Benchmarks for Descriptors

To evaluate the effect of data augmentation on rotation robustness, we have designed and

implemented three generic benchmarks for descriptors. We limit both the augmentation and

our benchmarks to only use rotations about a single axis (z).

Each of the benchmarks maps angles θ ∈ [0, 2π] onto real-valued scores, corresponding to how

well the descriptor handles z-rotations by θ being applied to its inputs. The meaning of well

depends on the benchmark.

While all the benchmarks could have an arbitrary point cloud dataset plugged in, we consis-

tently use the ModelNet40’s test set.

All three benchmarks are constructed similarly, therefore we first introduce some notation to

unify all three:

• Let C denote a set of point clouds used by the benchmark (we used the ModelNet40’s

test set).

• Let Rzθ denote the z-rotation by an angle θ.

• Let f : C → D denote the descriptor being benchmarked, where D is the metric feature

4https://www.jade.ac.uk/

https://www.jade.ac.uk/
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space equipped with a distance metric d : D ×D → R.

• Let ci ∈ C denote a single input point cloud.

• Let s denote the score function of the benchmark, which maps a pair (R, ci) onto a

real-valued score. The three benchmarks will differ by their definitions of s.

The final output of each benchmark is the function S defined as:

S(θ) =
1

|C|

|C|∑
i=1

s(Rzθ, ci), (4.1)

i.e. each rotation angle is mapped onto the average score over all input clouds. We

find this mapping is best visualised as a polar plot, such as the ones seen in Fig-

ures 4.5, 4.6, 4.7.

4.5.1 The eknn benchmark

This benchmark’s name stands for ‘Exclusive k Nearest Neighbours’.

Let N ⊆ C r {ci} of size k be the set of point clouds from C that are k nearest neighbours of

Rzθci (excluding ci itself).

Then the score is:

s(Rzθ, ci) :=


1.0 if N contains a cloud of the same class as ci

0.0 otherwise.

(4.2)

S(θ) is therefore a real number in [0, 1], where larger values are better.

For example, the eknn benchmark with k = 1 maps an angle θ to the percentage of clouds

ci for which the nearest-neighbour of the rotated cloud Rzθci in feature space is of the same

class as ci. Example plots of S(θ) can be found in Fig. 4.5.

Thus the eknn score (with k = 1) of a descriptor f at the angle 0 gives a theoretical lower
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(a) A basic PointCNN model, not robust to rota-
tions.

(b) A PointCNN model trained with data aug-
mentation, and thus robust to rotations.

Figure 4.5: Example eknn scores (k = 1) for two different models. The basic model has the
highest score at 0◦, and the score deteriorates away from 0◦, being worst at ±90◦. For the
robust model, the score stays approximately constant at all angles (equal to the 0◦-score of
the basic model), indicating strong robustness to rotations.

bound on classification accuracy we can obtain – one could always use the descriptor f and

turn it into a classifier by picking the class of the nearest neighbour in the training set. This

may not be a practical approach for too large datasets as it requires storing the entire training

set worth of descriptions.

One could also hope to further improve classification accuracy by, for example, training a

Multi-Layer Perceptron that takes the description as input and outputs classification logits.

4.5.2 The delta benchmark

In short, this benchmark looks at the distance by which a rotation shifts descriptions in the

feature space (normalised by dividing by the average feature space distance between Rzθci and

everything in C):

s(Rzθ, ci) :=
d (f (Rzθci) , f(ci))

1
|C|
∑|C|

j=1 d
(
f
(
Rzθci

)
, f(cj)

) . (4.3)

S(θ) is therefore a real number in [0,∞), where smaller values are better. A perfectly
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(a) A basic PointCNN model, not robust to rota-
tions.

(b) A PointCNN model trained with data aug-
mentation, and thus robust to rotations.

Figure 4.6: Example delta scores for two different models. The score at 0◦ is 0 by definition.
The score deteriorates at angles further from 0◦. The performance reduction is much greater
for the non-robust model, but the scores do stay below 1.0, indicating that the descriptor is
better than random. The scores are non-zero for the model trained with data-augmentation,
indicating it is not exactly invariant to rotations.

rotation-invariant model would have a delta score of 0.0. Example plots of S(θ) can be

found in Fig. 4.6.

4.5.3 The mean-dist benchmark

In short, this benchmark looks at how well the classes (including the rotated representatives

of those classes) are clustered in feature space.

Let SAME ⊆ C denote the set of clouds from the same class as ci, and DIFF := C r SAME.

In words, the score function computes the ratio of mean feature-space distance of Rzθci to

different-class objects to the mean feature-space distance of Rzθci to same-class objects:

s(Rzθ, ci) :=

1
|DIFF|

∑|DIFF|
j=1 d(f(Rzθci), f(DIFFj))

1
|SAME|

∑|SAME|
j=1 d(f(Rzθci), f(SAMEj))

(4.4)

S(θ) is therefore a real number in [0,∞), where larger values are better (different-class

objects should be further away than same-class objects). Example plots of S(θ) can be found
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(a) A basic PointCNN model, not robust to rota-
tions.

(b) A PointCNN model trained with data aug-
mentation, and thus robust to rotations.

Figure 4.7: Example mean-dist scores for two different models. The non-robust model has
the highest score at 0◦, and the score deteriorates away from 0◦, being worst at ±90◦. The
score stays above 1.0, however, indicating the model is still better than random. For the robust
model, the score stays approximately constant at all angles, indicating strong robustness to
rotations.

Benchmark Range of S(θ) Better values S(θ) for random
descriptor

S(θ) for a rot. in-
variant descriptor

(k=1) eknn [0, 1] larger 1/|C| a [0, 1]

delta [0,∞) smaller 1.0 0.0

mean-dist [0,∞) larger 1.0 [0,∞)

Table 4.2: List of our rotation robustness benchmarks. aAssuming each class has the same
number of examples in C.

in Fig. 4.7.

4.5.4 Summary

Table 4.2 juxtaposes the three rotation-robustness metrics. As an extra intuition for how

to interpret benchmark scores, the table also states what value the benchmark would take,

in expectation, for a ‘random descriptor’. ‘Random descriptor’ here is defined as one that

has a constant number of fixed descriptions and picks uniformly a random injective mapping

which determines how it assigns descriptions to objects and all rotated objects (assuming only

finitely many different values of θ are considered, as is the case in practice).
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Filename Purpose

benchmark plotting.py Polar plots for rotation robustness benchmarks

eval mn40.py Rotation robustness benchmarks

illustrate.py Visualising failure and success cases in eknn benchmark

pca plot.py Visualising descriptor feature space

Table 4.3: Overview of the code written for the data augmentation study. All files written
fully by the dissertation’s author.

4.6 Implementation

Our primary development framework was Python 3 and Tensorflow 1.8 [50]. Data plots were

made with matplotlib [51].

The essential code that we have authored for the project is attached with this dissertation

and an overview of the files is presented in Table 4.3.

4.7 Results

The augmentation methods and their results are introduced in the following Sections. All

models have been trained on the ModelNet40 dataset for 20k steps, which corresponds to

260 epochs. This takes about an hour on a single NVIDIA Titan V GPU. A summary of all

results can be found in Table 4.4.

The benchmarks scores were computed using a 200-cloud subset of ModelNet40’s test set.

4.7.1 No Augmentation (none)

Referred to as none, this baseline model is trained with no data augmentation. Its scores on

the three rotation robustness benchmarks are pictured in Fig. 4.8.

The model is demonstrated to not be robust to rotation, as the delta scores are far from 0.0

and the eknn and mean-dist scores vary greatly for different angles.

The scores of all benchmarks are worst at ±90◦ angles. Our explanation is that some of the

ModelNet40 models are approximately symmetric to 180◦ rotations about the z-axis, which
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(a) The eknn scores. (b) The delta scores. (c) The mean-dist scores.

Figure 4.8: Rotation robustness benchmark scores for the PointCNN model ‘none’.

makes the scores better closer to 180◦. For example, a guitar model has a relatively similar

shape when rotated by 180◦ about its longest axis (along the guitar neck).

The eknn score of about 0.6 at 0◦ indicates that the model is capable of obtaining at least

60% classification accuracy. The score drops drastically to about 0.1, when the inputs are

rotated by 90◦ compared to the training set.

The delta score reaches 0.8 for 90◦ rotations. That means the distance in feature space

between a model and its 90◦-rotated version is only 20% lower than the distance between that

rotated model and the entire dataset on average. The score being lower than 1.0 suggests that

the model performs better than a random descriptor, but the score being so high indicates

low robustness to rotations.

4.7.2 Uniform sampling (uni-360)

This model, referred to as uni-360, was augmented with z-rotations sampled uniformly from

[−π, π] for each cloud used in training. The model’s scores on the three rotation robustness

benchmarks are pictured in Fig. 4.9.

The scores prove that augmentation helped make the model robust to z-rotations. The eknn

score is approximately constant for all angles, meaning that inputs are, on average, equally

likely to be classified correctly, no matter what rotation may be applied to them. The score is

contained in the range [0.56, 0.62] for all angles. Notably, this is significantly lower than the

0.67 score at angle 0◦ for the non-augmented model. This shows there is a trade-off between
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(a) The eknn scores. (b) The delta scores. (c) The mean-dist scores.

Figure 4.9: Rotation robustness benchmark scores for the PointCNN model ‘uni-360’.

robustness and peak accuracy.

The delta score reaches its worst value of 0.18 at 180◦. It is interesting to see that the 90◦

rotation is no longer the worst case – the score is worst at 180◦. The delta score being non-

zero proves that the model is not exactly rotation-invariant. At the same time, the scores are

much lower than for the non-augmented model, indicating high robustness of the descriptor

to z-rotations.

The mean-dist score is approximately equal for all rotations, at the value of approximately

2.0. This tells us that, even though the rotations do affect the descriptions (as shown by the

delta score), the rotated inputs from a given class still belong to the class’ cluster equally

strongly as their non-rotated versions.

When investigating the mean-dist plots of descriptors, the level of their uniformity over all

angles informs us about the rotation robustness of the model — as long as the scores are well

above 1.0 (the random descriptor score).

The absolute value of the mean-dist score itself indicates the strength of separation of class

clusters in the feature space – the score is conceptually closely correlated with the objective

that the triplet and pairwise losses are designed to optimise.

A higher mean-dist score is desirable and the range of scores has no theoretical upper bound.

However, it is important to note that a perfect classifier (eknn score of 1.0) could have a

finite mean-dist score and – conversely – a sequence of descriptors could have unbounded
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(a) The eknn scores. (b) The delta scores. (c) The mean-dist scores.

Figure 4.10: Rotation robustness benchmark scores for the PointCNN model ‘uni-180’.

mean-dist scores at 0◦ but eknn scores at 0◦ bounded from above by a constant value strictly

less than 100% (because the clusters can be very far apart but have a constant percentage of

‘impostor’ points from other classes).

4.7.3 Uniform sampling on half the domain (uni-180)

This model, referred to as uni-180, was augmented with z-rotations sampled uniformly from

[−π/2, π/2] for each cloud used in training. That is, only half of the space of z-rotations

was used. The model’s scores on the three rotation robustness benchmarks are pictured in

Fig. 4.10.

On the eknn benchmark, this model outperforms uni-360 at 0◦ rotation, and matches it

at 90◦ rotation, while performing much worse in the range of rotations not used during

augmentation, i.e. [π/2, 3π/2]. This further demonstrates the trade-off (first noted in the

discussion of uni-360) between peak eknn scores and their uniformity over all rotations.

The delta score is consistently worse than for the uni-360 model, at all angles. That indicates

the descriptor is less robust to even the small rotations, when the range used for augmentation

is limited.

The mean-dist scores follow those of uni-360 in the augmentation range [−π/2, π/2] and

drop off elsewhere.
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(a) The eknn scores. (b) The delta scores. (c) The mean-dist scores.

Figure 4.11: Rotation robustness benchmark scores for the PointCNN model ‘discr-90’.

(a) The eknn scores. (b) The delta scores. (c) The mean-dist scores.

Figure 4.12: Rotation robustness benchmark scores for the PointCNN model ‘discr-45’.

4.7.4 Discrete sampling (discr-90)

This model, referred to as discr-90, was augmented with z-rotations sampled randomly from

a discrete list of values: [0, π/2, π, 3π/2]. The model’s scores on the three rotation robustness

benchmarks are pictured in Fig. 4.11.

This model’s scores on all three benchmarks tell the same story – the model handles all

four rotations seen during training well, but its performance deteriorates rapidly for rotations

farther away from those four.

4.7.5 Denser discrete sampling (discr-45)

This model, referred to as discr-45, was augmented with z-rotations sampled randomly from

a discrete list of values: [0, π/4, 2π/4, . . . , 7π/4]. The model’s scores on the three rotation

robustness benchmarks are pictured in Fig. 4.12.
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The effect of discretely sampling rotations every 45◦, as opposed to every 90◦ is qualitatively

different. The model’s performance does not deteriorate for the in-between angles, e.g. 22.5◦.

The scores on all three benchmarks closely resemble the uniform sampling method uni-360.

That shows that there is a limit as to how finely the rotation space needs to be sampled for

the model to become robust to the entire space of rotations.

4.7.6 Pair augmentations (pairs)

This augmentation method is more involved, in that it doesn’t simply sample a rotation

independently for each cloud. Instead, in each training batch, we include two copies of every

cloud – one of them rotated by a uniformly-sampled rotation (as in uni-360), the other one

rotated by 90◦ with respect to the former.

This is motivated by the idea that 90◦ rotations are the ones the baseline model is least

robust to. Given that both copies of a cloud are in the same batch, the pairwise/triplet loss

is guaranteed to receive plenty of examples to punish, as long as the model doesn’t handle

90◦ rotations well and keeps misclassifying one of the two copies.

The pair augmentation idea is our original contribution, as far as we are aware, it has not

been documented. It is generic, in that both the uniform sampling and the fixed 90◦ rotation

can be replaced by other distributions (we treat the 90◦ rotation as a trivial single-valued

distribution).

Further, note that this augmentation method is designed for losses which are computed over an

entire batch, rather than being computed independently for each input of the batch and then

added. In the latter setting, we would not expect the difference between pair augmentation

and a per-cloud method using the same effective distribution. Technically, the ordering of the

input examples enforced by the pair augmentation method would still make a difference to

the training process.

The model’s scores on the three rotation robustness benchmarks are pictured in Fig. 4.13.

The model trained with pair augmentation has, as expected, successfully learned robustness
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(a) The eknn scores. (b) The delta scores. (c) The mean-dist scores.

Figure 4.13: Rotation robustness benchmark scores for the PointCNN model ‘pairs’.

(a) The eknn scores. (b) The delta scores. (c) The mean-dist scores.

Figure 4.14: Rotation robustness benchmark scores for the PointCNN model ‘y-axis’.

to rotations, as indicated by the uniformity of its eknn and mean-dist plots, and the low

delta scores.

The model performs very comparably to uni-360, but the small differences in performance

are consistently in favour of uni-360.

4.7.7 Orthogonal axis (y-axis)

This model, referred to as discr-45, was augmented with rotations about the y axis, sampled

uniformly from [−π, π]. Note this is an axis orthogonal to the one used for evaluation of the

robustness benchmark scores, which use z-rotations. The model’s scores on the three rotation

robustness benchmarks are pictured in Fig. 4.12.

The y-axis model is trained with data augmented with rotations orthogonal to those de-

scribed for the benchmarks. One might expect that model to perform at least as well as the

non-augmented model. Further, it is reasonable to expect it to perform better, as it effectively
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method eknn scores1 delta scores mean-dist scores

none 0.67 0.06 0.26 0.04 0.0 0.83 0.58 0.86 2.29 1.22 1.70 1.20

y-axis 0.72 0.10 0.33 0.07 0.0 0.85 0.64 0.86 2.42 1.22 1.63 1.20

pairs 0.56 0.57 0.57 0.54 0.0 0.15 0.18 0.18 1.95 1.94 1.96 1.94

uni-360 0.56 0.59 0.60 0.56 0.0 0.15 0.18 0.18 2.00 1.98 1.99 1.98

uni-180 0.66 0.60 0.34 0.32 0.0 0.33 0.51 0.51 2.10 1.99 1.70 1.70

discr-90 0.69 0.71 0.65 0.39 0.0 0.28 0.29 0.50 2.10 2.07 2.04 1.63

discr-45 0.57 0.59 0.58 0.56 0.0 0.14 0.18 0.18 2.06 2.05 2.04 2.03

Table 4.4: Summary of scores of all evaluated augmentation methods. 1The four entries for
each benchmark are, in order: score at 0◦, at 90◦, at 180◦, worst score. All scores are rounded
to two decimal digits. Bold font indicates the best score among the seven models, italics
indicate the worst.

sees more training data – over the course of training, 260 epochs of data are processed, and

therefore a model with augmentation, which generates ‘new’ inputs every time, sees more

unique data overall. That is indeed observed in the consistently superior eknn scores of the

y-axis model. The delta and mean-dist scores are comparable for both models.

The profiles (shapes) of both eknn and delta score plots for the none and y-axis models are

quite similar. Contrary to that, the mean-dist scores of the y-axis model deteriorate at the

four angles k · π/2 + π/4, k ∈ Z – a phenomenon not present for the none model.

4.7.8 Comparative Summary

The benchmark results are aggregated in Table 4.4.

uni-360, pairs, and discr-45 are the three models that exhibit strong robustness to all z-

rotations. The small differences in the benchmark scores suggest that discr-45 is preferable

to uni-360, and more so to pairs.

The non-augmented baseline and y-axis perform poorest in virtually all benchmarks, indi-

cating that all reasonable methods of augmentation, that we evaluated, have benefited the

model’s robustness to rotations.

The y-axis model outperforms all other models with respect to the eknn score at 0◦. This

score being significantly better than the eknn score at 0◦ for the analogous uni-360 model,
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method none y-axis pairs uni-360 uni-180 discr-90 discr-45

mean 0.23 0.23 0.58 0.60 0.54 0.55 0.58

at 0◦ 0.67 0.72 0.56 0.56 0.66 0.69 0.57

worst 0.04 0.07 0.54 0.56 0.32 0.39 0.56

Table 4.5: Average eknn results over all angles. The results at 0◦ are approximately the best
results of all the models. The bottom two rows give evidence that the profiles of the eknn

scores among the rightmost five models vary much more than the mean.

demonstrates an anisotropy of the dataset. While the models in ModelNet40 are, in general,

not all aligned, there must be an average tendency for the z and y axes to relate differently

to symmetries of the clouds in the dataset.

4.7.9 General Observations

Some general observations, discussed below, can be made, based on the multitude of bench-

mark scores obtained.

The mean-dist score can be observed to be strongly correlated with 1/delta for the non-

robust models – this property is not implied by the definitions of the scores, and thus is

interesting to see. For the two robust models, the mean-dist score is approximately constant,

while the delta score still varies greatly between 0.0 at 0◦ and approximately 0.18 at 180◦.

A trade-off can be noticed between the peak eknn score and its uniformity over all angles.

More robust models have lower peaks – e.g. uni-360 performs poorer at 0◦ than the non-

augmented model. The discr-90 model outperforms all other models at 90◦ and 180◦, while

performing worse than uni-360 at in-between angles such as 45◦.

The trade-off mentioned above would be expected to promote different models to have more

similar average eknn score across all angles. To validate that idea, we have computed the

means, presented in Table 4.5. The table demonstrates that – while the shapes of the polar

plots of eknn scores of augmented models such as uni-360, uni-180, and discr-90 are very

different – their mean eknn scores (averaged over all angles) are very similar – all between

0.55 and 0.60. The non-augmented model and the one augmented with rotations about an

orthogonal axis both have a mean eknn score of 0.23 – much lower than the other models.



Chapter 5

The Spherical Fractal Convolutional

Neural Network (SFCNN)

5.1 Brief Overview of the SFCNN

What follows is an overview of the architecture. An accompanying diagram of the architecture

can be seen in Fig. 5.1. All details are fully defined in later Sections of this Chapter.

1. A 3D point cloud P of an arbitrary size (further denoted by N) is accepted as an input.

It is scaled and translated so that it has mean 0 and, under that condition, fits tightly

in a radius-1 sphere centred in the origin.

2. A spherical lattice with radius 1 and origin 0 is put in the same space as the input

cloud. The lattice can be considered an undirected graph with finitely many vertices

(the number of vertices further denoted by V ) that come with a position in R3.

3. The projection step follows. That is, for each vertex v of the lattice, a feature vector is

computed based on the positions of the k (a fixed hyperparameter) points of P that are

closest to v.

4. The input point cloud is not used any more after the projection step. The architecture

62
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proceeds by processing the lattice with features at its vertices. That is referred to as

the convolutional stage, where, at each step, new features for each vertex are computed

based on its previous features, as well as the features of its neighbours in the lattice.

5. The convolutional stage is split into substages. At the end of each substage, the lattice

is made coarser by dropping every other vertex. At the same time, the dimensionality

of the features is increased. This is analogous to decreasing the image dimensions but

increasing the number of channels in an image-processing Convolutional Neural Network

(CNN). At the end of each substage, max-pooling over all lattice vertices is performed

to obtain a single feature vector for the entire lattice1.

6. Finally, those ‘global’ feature vectors from all substages are all concatenated and fed

into a Multi-Layer Perceptron (MLP) that outputs classification logits.

5.2 Subdivided Regular Icosahedron as a Lattice

A key concept used in the SFCNN architecture is the spherical lattice. That lattice is made

progressively coarser as the convolutional stage proceeds. We begin by capturing the ab-

stract properties that a lattice needs to have in order to be compatible with the SFCNN.

Any structure that matches the definition of the subdivided lattice could be plugged into the

SFCNN.

Definition. Let a lattice be a finite undirected graph with vertices in R3.

Definition. We define a subdivided lattice with s levels of subdivision to be a sequence of

s lattices L0, . . . , Ls−1, such that Li is a subgraph of Li+1 for all i. That means all vertices

(resp. edges) of Li are also vertices (resp. edges) of Li+1.

Further, we define the exact lattice used by the authors of the original paper, which we

also use in our implementation. The lattice is based on the Platonic solid known as regular

icosahedron.

1The term ‘max-pooling’ refers to taking a point-wise maximum over the feature vectors at all
vertices.
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Figure 5.1: The SFCNN architecture. The input cloud is embedded inside a spherical lattice.
The projection module computes a feature vector for every vertex on the initial lattice. Lattice
convolutions are then performed, making the lattice progressively coarser. The lattice features
are maxpooled over all its vertices at the end of each convolutional substage, and the results
are concatenated, and then input into a final MLP, which returns the class probabilities
corresponding to the input cloud.
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The regular icosahedron is a regular polyhedron (informally, regular means that it looks the

same from the perspective of each of its vertices, each of its edges, and each of its faces) that

has 20 triangular faces. Its illustration can be found in Fig. 5.2. Its relevant properties are:

• Each of its 20 faces is a triangle.

• All 12 vertices have degree 5.

• It has a circumsphere, i.e. a sphere that passes through all of its vertices.

The regular icosahedron can be iteratively subdivided to create a sequence of progressively

finer polyhedra2. Each subdivision step works as follows:

1. On each existing edge, create a new vertex in the middle of that edge.

2. For each existing face (they are all guaranteed to be triangular), create three edges

between the newly created vertices, so that the original face is subdivided into four

triangular faces.

3. Finally, scale all the new vertices away from the origin (the centre of the circumsphere)

so that they land on the circumsphere.

This step can be applied an arbitrary number of times iteratively. The polyhedron obtained

after n subdivision steps will have the following properties:

• Each of its 20 · 4n faces is a triangle.

• 12 vertices (being the original ones) have degree 5 and all other 30 ·
(∑n−1

k=0 4k
)

vertices

have degree 6.

• It has a circumsphere.

Let In denote the regular icosahedron subdivided n times, as defined above. Then the sub-

divided lattice that we use in our SFCNN implementation is (I1, I2, I3, I4). See Fig. 5.2 for

an illustration. Note that the non-subdivided icosahedron I0 is not used. Rao et al. [5] note

2The spherical polyhedra obtained by subdividing the icosahedron, as described, are referred to as
icospheres, e.g. in the Blender 3D editing software [52].
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Figure 5.2: From left to right: the regular icosahedron I0 and its four consecutive subdivisions
I1, I2, I3, I4.

that it is too coarse.

5.3 The Projection Module

For a fixed lattice L with V vertices, the projection module consumes the input point cloud

P of size N (i.e. with N points), and produces a d-dimensional feature vector fv for each

lattice vertex v. The lattice that is projected onto is the one at the highest subdivision level

(i.e. the most subdivided).

Before defining the projection module, we need to introduce the reader to Non-Local lay-

ers [53].

5.3.1 Non-Local Layers

Non-Local layers [53] were proposed in the context of deep video processing, to provide a

means for extracting long-distance relations in the data, be it in pixel space, or time. A non-

local layer computes a response at a point as a weighted sum of features at all points. This

is in contrast to convolutional and recurrent modules which favour local information transfer

– it usually takes many layers of convolutions for the data from one corner of an image to

interact with data from the opposite corner in any way.
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A Non-Local layer’s response has the simple generic definition, where x and y are the input

and output vectors, respectively:

yi =
1

C(x)

∑
∀j
f(xi, xj)g(xj) (5.1)

where C(x) is a normalisation factor, g is a learnt transformation of the inputs, and f is a

learnt attention-like function. The sum is taken over all points j, as emphasised by the ‘∀’

symbol in the sum.

Wang et al. [53] propose four concrete instantiations of Eq. 5.1, all with g being a simple

linear transformation: g(xj) = Wgxj . The four different choices of function f (together

with a corresponding C) are referred to as Gaussian, Embedded Gaussian, Dot Product, and

Concatenation [53].

5.3.2 Implementation of the Projection Module

The projection module works in 3 stages (illustrated in Fig. 5.3):

1. For a lattice vertex v, the k nearest neighbours of v amongst the points of the cloud P

are selected. (k is a fixed hyperparameter of the network.) Let Pv denote this k-point

subcloud of P , with points P
(1)
v , . . . , P

(k)
v .

2. A rotation Rv is applied to Pv. It is a rotation about the origin, that maps v to a

globally fixed vector u, fixed for the purposes of this work to be u = (0, 0, 1) ∈ R3.

There exists more than one such rotation; this topic is discussed in detail in Section 5.6.

This rotation can be thought of as transforming the subcloud to a coordinate system

corresponding to v’s ‘point of view’.

3. The rotated subcloud RvPv is fed into a three-layer point-wise Multi-Layer Perceptron

(MLP). That MLP is shared for all v and also for all points in the subcloud. A Non-Local

layer is also applied before the final layer of the MLP.

The MLP∗ (asterisk to indicate presence of the Non-Local layer) maps each 3-dimensional
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point (x, y, z) onto a higher-dimensional feature vector. At the end, max-pooling over

all k points in the subcloud is applied to obtain the feature vector fv.

fv := max
i∈{1,...,k}

MLP∗
(
RvP (i)

v

)
(5.2)

The authors of SFCNN do not mention which variant of Non-Local layer they use. However,

one of the key observations made in the original paper on Non-Local networks [53], is that the

choice of Non-Local layers’ instantiation doesn’t seem to much affect performance of models

containing those layers. For the purpose of this project, we have chosen to use the Gaussian

instantiation:

f(xi, xj) := exp(xTi xj), C(x) :=
∑
∀j
f(xi, xj). (5.3)

The ∀j non-locality ranges over the k points of each subcloud.

5.4 Lattice Convolutions

5.4.1 The Basic Block

The purpose of lattice convolutions is to combine features of each lattice vertex with those of

its neighbours. The contributions of all neighbours should be symmetrical. This motivates

the following formula:

f ′v = conv

(
max
i∈nei(v)

(conv(fv||fi))
)
, (5.4)

where nei(v) denotes the set of lattice-neighbours of v, fv||fi denotes concatenation of the

two feature vectors along the channel dimension, conv denotes a convolution with kernel size

1, and the max is taken pointwise.

In words, for each neighbour i of v, a convolution is applied to fv||fi. Vectors obtained this
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Figure 5.3: An illustration of the Projection Module.
Top row: the input cloud is embedded in a sphere. For each vertex v, the nearest neighbour
subcloud is extracted (marked green in the image). The Rv rotation that aligns the vertex v
with the fixed vector u is applied to the cloud.
Bottom row: the rotated subcloud RvPv is input into the MLP∗, which returns the feature
vector fv for the vertex v.
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way for all neighbours are maxpooled, and then the result undergoes a second convolution to

yield the new feature vector f ′v.

A few common deep learning tricks are further used to enhance Eq. 5.4, see Fig. 5.4 for an

illustration:

1. A ReLU activation3 followed by a batch normalisation [54] step is applied before the

max-pooling.

Applying batch normalisation after a certain layer means that the b outputs of that

layer (where b is the size of the training batch) are jointly normalised (each dimension

independently) to have mean 0 and variance 1. While positive influence of batch nor-

malisation has been empirically noticed in many different settings, the reasons for that

are still a subject of investigation [55].

2. Batch normalisation is also applied after the second convolution.

3. That second batch normalisation is followed by an incoming residual connection [36],

i.e. the original input fv is (pointwise) added to the current output.

While the increasing capability to train ever deeper and wider networks has been directly

responsible for the recent successes of deep learning, increasing network depth does also

create some problems. A prime example is the vanishing gradient problem [56]. In short,

the partial derivatives of loss with respect to weights of the network are computed using

chain rule, which involves a number of gradient multiplications that grows linearly with

the network’s depth. Thus, in deep networks, gradients can become very prohibitively

small, not allowing the parameters to change after any sensible amount of training.

The purpose of residual connections is to introduce shallower paths in the network, which

skip some layers. This helps alleviate the issues inherent to deep networks. Residual con-

nections are not the only solution to the vanishing gradient problem, other approaches

3A commonly used activation function, defined to map negative x to 0, and non-negative x to
x. Activation functions are used in neural networks to introduce non-linearity – without those, a
large network composed of linear transformations would not be more expressive than a single linear
transformation.
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Figure 5.4: The basic block of the SFCNN’s convolutional stage, as described in Section 5.4.1.
A mapping of a single vertex’ feature vector fi to its next value f ′i is shown. That operation
is performed in parallel for the entire lattice, in practice, adding an extra dimension of size V
(vertex count of the lattice) to all tensors. d is equal to 5 or 6 for the icosahedral lattice.

including use of persistent state such as in the Long Short Term Memory (LSTM) archi-

tecture [57], or adapting the activation functions (the vanishing gradient problem being

one of main reasons for the popularity of the ReLUactivation function, and decreased

use of the once ubiquitous sigmoid and tanh functions).

4. The residual connection is followed by another ReLU activation.

The Eq. 5.4 with the aforementioned enhancements is further referred to as the basic block of

the convolution stage of SFCNN. Fig. 5.4 provides an illustration.

5.4.2 The Convolutional Stage

The convolutional stage, i.e. the part of the SFCNN architecture that follows the projection

module, is easiest understood as a sequence of substages.

A single convolutional substage consists of a number of basic blocks (see Section 5.4.1) applied

sequentially, followed by dropping out the vertices from the finest subdivision level. That is,

the next substage shall operate on a coarser lattice. In exchange, the next substage shall use

a higher channel count, i.e. each vertex has a higher-dimensional feature vector associated

with it.
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A single substage i uses a constant number of Ci channels. The convolution conv(fv||fi) maps

2Ci channels onto Ci channels, while the second convolution in a basic block maps Ci channels

onto Ci channels. Exceptions occur at boundaries between two substages, where the channel

count needs to change (Ci → Ci+1).

At the end of each substage i, the entire lattice is maxpooled, and the vector Fi := maxv f
(i)
v

is stored, where f
(i)
v denotes the feature vector at v at the end of substage i.

The final output of the convolutional stage of SFCNN is (F1||F2|| . . . ||Fn), where n is the

number of convolutional substages used, and || denotes concatenation. Its dimensionality is

C1 + C2 + . . .+ Cn.

5.5 Full Model

Putting it all together, the SFCNN architecture is composed of three stages performed in

sequence:

1. Projection of the point cloud onto the lattice.

2. The convolutional stage.

3. An MLP that outputs classification logits.

A three-layer MLP is used in the final step, with 512, 128, and C outputs in consecutive

layers, where C is the number of classes for the classification task at hand.

When describing the architecture, we have not specified the exact number of channels, or basic

blocks used. In [5], the authors condense those into two hyperparameters, B for depth, and K

for width. See Table 5.1 for details. Those, together with k (number of points in the nearest-

neighbour subclouds in the projection step) are the three hyperparameters of SFCNN. For

reference, the best-performing model found by the authors of [5] used k = 16, B = 3,K = 8.

This concludes the presentation of the original SFCNN architecture, as introduced in [5].

What follows is an analysis and discussion of that model.
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Convolutional Substage # Lattice Vertices # Channels # Basic Blocks Sequentially

1st 2562 16K 2B
2nd 642 32K 2B
3rd 162 64K 2B
4th 42 128K 4

Table 5.1: The convolutional stage in detail.

5.6 Analysis of Rotation Invariance

Recall the Projection Module, as defined in Section 5.3. The k-point subcloud Pv of the

input cloud P was extracted for each vertex v. Then, a rotation Rv was applied to Pv. We

stated that Rv is a rotation such that Rvv = u, where u is some globally fixed vector, e.g.

(0, 0, 1) ∈ R3 in our implementation. This turns out to be ambiguous. We examine the

rotations Rv and their purpose in greater detail now.

The main purpose of using those rotations and choosing a spherical and close-to-uniform

lattice, is to introduce some robustness against input rotations. Robustness is all that the

model provides – it is not exactly rotation invariant, as we discuss later.

It is easiest to illustrate the motivation for the SFCNN architecture by showing a modified

version of it, which is exactly rotation-invariant, up to an error introduced by imperfection

of the lattice (we explain, what we mean by this later). As we remove the modification again,

to restore the original SFCNN model, we lose the exact invariance property, but leave in place

most of the mechanisms that helped achieve it — this is our justification for why the model

handles rotations well.

5.6.1 The (Lossy) Rotation Invariant SFCNN

After applying the rotations Rv (step 2 in Section 5.3) to the subclouds, the original SFCNN

would feed their (x, y, z) coordinates into the MLP∗ (step 3 in Section 5.3).

An extra step that we add to the original SFCNN, in order to obtain an exactly rotation

invariant model, is replacing the 3D (x, y, z) coordinates of the points with 2D coordinates



CHAPTER 5. THE SPHERICAL FRACTAL CONVOLUTIONAL NEURAL NETWORK

Figure 5.5: The z-rotation-invariant 2D feature illustrated. The two parameters
√
x2 + y2

and z are equal to the distance away from the z axis, and distance from origin along the z
axis, respectively. Crucially, both are invariant to z-rotations.

(see Fig. 5.5 for illustration):

(
√
x2 + y2, z). (5.5)

Recall that the we have chosen (0, 0, 1) to be the fixed vector u, referred to in the definition

of rotations Rv. The key property of the chosen representation (
√
x2 + y2, z) is that those

new features are invariant to rotations about u.

Remark. This extra step sacrifices some information, though this is, strictly speaking, not

necessary. For example, the information-lossless Rigorously Rotation Invariant features

introduced by Chen et al. [39] (and discussed in Section 3.3) could be used instead of

(
√
x2 + y2, z).

We now proceed to prove that the modified SFCNN is rotation invariant (up to the error

introduced by imperfections of the lattice). Recall that we use the notation Rzα to denote a

rotation by angle α about the z-axis.

We start by proving a useful lemma about a particular unique representation of 3D rotations.

Informally, the Lemma states that any rotation Rv that rotates v onto u – and there is

infinitely many such rotations for each v – can be decomposed into a fixed rotation Q(v)

which rotates v onto u, followed by a rotation about u (the z-axis).
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Lemma 1. Let S2 denote the unit sphere. There exists a function Q : S2 → SO(3), such that

every rotation Rv ∈ SO(3) that rotates v to u = (0, 0, 1) can be represented as Rzα ◦Q(v) for

a unique α ∈ [0, 2π).

Proof. We start by defining Q. Consider the usual spherical coordinates4 (φ, θ) ∈ [0, 2π] ×

[−π/2, π/2], built around the global coordinate frame (x, y, z), so that x-rotations change the

longitude φ.

The spherical coordinates are unique everywhere on S2, other than the poles of the x-axis, i.e.

θ = ±π/2, where any longitude φ maps to the same point. Written formally, that well-known

fact reads:

Claim. For any point p on the unit sphere, other than the poles poleN := (1, 0, 0) and

poleS := (−1, 0, 0), there is a unique rotation κ(p) that maps u = (0, 0, 1) onto p and is

of the form:

κ(p) = R
(Λy)
θ ◦ Λ, where Λ := Rxθ , θ ∈ (−π/2, π/2), φ ∈ [0, 2π). (5.6)

In words, Λ is an x-rotation by some φ, that should be pictured as acting on both the

point p and the y-axis. After p is rotated by Λ, it is then rotated by the (latitudal) angle

θ ∈ (−π/2, π/2) about the Λ-rotated y-axis obtained from the y-axis by φ. Λ followed by the

latitudal rotation is the definition of κ(p).

Additionally, let κ(poleN ) := Ryπ/2 and κ(poleS) := Ry−π/2. This choice is arbitrary, we could

have used any spherical-coordinate-type rotation with latitude ±π/2.

We define Q(p) := κ−1
p for every p ∈ S2.

To prove that every rotation Rv that rotates v to u can be represented as Rzα ◦ Q(v) in at

most one way, note that there must be Rzα = Rv ◦Q(v)−1 and thus α is unique.

4With radius r implicitly fixed to 1.
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To prove that every rotation Rv that rotates v to u can be represented as Rzα ◦ Q(v) in at

least one way, we note that the rotation Rv ◦Q(v)−1 must be a rotation about the u-axis, as

it preserves the origin (because both Rv and Q(v) do) and it preserves u:

(Rv ◦Q(v)−1)u = Rv(Q(v)−1u) = Rv(v) = u.

Having proven Lemma 1, we now proceed to prove invariance of the modified SFCNN.

Consider an input cloud P , an arbitrary rotation R ∈ SO(3), and the rotated cloud RP . We

want to show that the lattice of feature vectors will be the same for both P and RP , up to

a rotation (equal to R). That would result in the SFCNN producing the same outputs for P

and RP , because of the max-pooling performed over all lattice vertices (see Section 5.4.2),

as the max-pooling provides invariance to lattice rotations (i.e. only the lattice connectivity

matters, and the positions of its vertices in space, or any kind of ordering assigned to them,

does not).

Consider an arbitrary lattice vertex v, and the lattice vertex Rv. We want to show that

fv(P ) = fRv(RP ), i.e. the feature vector at v for the input cloud P is the same as the feature

vector at Rv for the input cloud RP .

Remark. This is where the aforementioned ‘lattice imperfection’ comes into play – for

most rotations R there would not actually exist a lattice vertex exactly at Rv, as the lattice

has finitely many vertices. On top of that, the lattice is not completely uniform, because

of the 12 degree-5 vertices it has amongst all its other degree-6 vertices. Thus the vertices

don’t all play a symmetric role in the convolutional stage.

Because the MLP∗ is shared for all lattice vertices, it is sufficient to prove that the features

fed into the MLP∗ are the same, i.e. fv(P ) = fRv(RP ).
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Note that the k-point nearest-neighbour subcloud Pv consists of the same points as the k-

point subcloud (RP )Rv. Formally: R(Pv) = (RP )Rv. This is easy to see – as the lattice and

cloud are rotated together by R, the distances between lattice vertices and input points do

not change.

Recall that we have chosen to convert the (x, y, z) positions to features that are invariant

to rotations about u. Therefore, it is sufficient to prove that: (a) applying Rv to the whole

cloud P , and (b) applyingRRv to the rotated cloud RP , both give outputs (rotated subclouds)

identical up to a u-rotation. Recalling that u = (0, 0, 1) is aligned with the z-axis, the succinct

way to restate this is Lemma 2 below. Proving it shall conclude the proof of invariance of

this modified SFCNN.

Lemma 2. RRv ◦R = Rzγ ◦ Rv, for some γ ∈ [0, 2π).

Proof. Let α, β ∈ [0, 2π) be such that Rv = Rzα ◦ Q(v) and RRv = Rzβ ◦ Q(Rv), the form

discussed in Lemma 1. Because Q(Rv) rotates Rv onto u, it follows that Q(Rv) ◦ R rotates

v onto u. Therefore, by Lemma 1, there exists a unique δ such that:

Q(Rv) ◦R = Rzδ ◦Q(v) (5.7)

We finish the proof of this Lemma as follows:

RRv ◦R = (Rzβ ◦Q(Rv)) ◦R (def. of RRv)

= Rzβ ◦ (Q(Rv) ◦R) (associativity)

= Rzβ ◦ (Rzδ ◦Q(v)) (by Eq. 5.7)

= Rzβ+δ−α ◦ (Rzα ◦Q(v)) (algebra of z-rotations)

= Rzβ+δ−α ◦ Rv (def. of Rv)

= Rzγ ◦ Rv. (setting γ := β + δ − α)
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The uniqueness of γ is implied by the uniqueness of α, β, δ, guaranteed by Lemma 1.

We have implemented the rotation-invariant version of SFCNN and confirmed a much higher

invariance (presumably only inexact due to the imperfection of the lattice). The experiment

is described in Chapter 6.

5.6.2 Impossibility of Invariance in the Basic SFCNN

In Section 5.6.1, we have proven that one can obtain rotation invariance by replacing the

(x, y, z) point features, fed into the MLP in the projection module, with 2D features invariant

to z-rotations.

We have also seen that there is infinitely many choices of the rotationRv, if the only constraint

is that Rvv = u. The original paper makes the concrete choice of Rv by specifying a closed

algebraic formula for Rv as a function of u and v, derived from the Rodrigues’ formula:

Rv := 2
(v + u)T (v + u)

(v + u)(v + u)T
− I. (5.8)

To conclude our discussion of SFCNN’s rotation invariance, we prove below that there is no

way to choose the rotations Rv, so that the SFCNN is invariant to all SO(3) rotations. That

would require that the subclouds fed into the MLP∗s in the projection step are themselves

invariant, which would in turn require that RRv ·R = Rv for all R ∈ SO(3) and v. We present

a quick proof by contradiction:

∀R, v. RRv ·R = Rv ⇐⇒

∀R, v. RR−1v = Rv ·R ⇐⇒

∀R, v. R−1
v · RR−1v = R (?)

Where the last statement is impossible, because (not only for some v, but even for all v) there
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exist rotations R1 6= R2 ∈ SO(3), such that R−1
1 v = R−1

2 v. (Those are simply the rotations

about the v-axis.) This quickly gives a contradiction:

R2
(?)
= R−1

v · RR−1
2 v = R−1

v · RR−1
1 v

(?)
= R1 6= R2.

5.6.3 Intuitive Summary

The rotations Rv are applied so that each lattice vertex sees the subcloud from ‘its point of

view’. For example, when describing an airplane, the lattice vertex near the tip of the plane

will always receive the same point cloud, independent of the global orientation of the plane.

The concrete lattice vertex will be a different one depending on the plane’s orientation, but

that does not matter, as the lattice vertices all contribute symmetrically to the SFCNN’s final

output.

The rotations Rv seem to help, but do not provide full invariance because they only eliminate

two degrees of freedom: the vertex v may see the same subcloud of P rotated differently about

the ‘line of sight’ axis, compared to what the vertex Rv sees for the rotated input RP .

Removing one degree of freedom by replacing the 3D features (x, y, z) of the subcloud points

with 2D features is a simple way to obtain a provably (approximately) rotation-invariant

architecture.

5.7 Quantitative Analysis of the Projection Step

The projection step begins by extracting nearest-neighbour subclouds Pv of the input cloud

P . Points that do not belong to any of the Pv subclouds make no contribution to the output

of the SFCNN.

The points ignored by the model are ones that are not the among the nearest points to any

lattice vertex. For concave surfaces, the points in the concavities are most susceptible to being

dropped out – and that in order changes the shape effectively processed by the SFCNN.
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Figure 5.6: An example cloud from the ModelNet40 dataset (chair 0083.ply). In red:
vertices that contribute to the SFCNN output. In blue: vertices that do not contribute to
the output.

To understand the extent of this effect in a real dataset, we checked what percentage of the

points contribute to the output of the SFCNN, across ModelNet40’s training set. We shall

refer to that percentage as the coverage of a point cloud. A histogram can be seen in Fig. 5.7a.

Convex surfaces can be proven to not be subject to that issue. Points may still be dropped

out in practice, but only due to the finite nature of the lattice. This is expressed rigorously

in the following Lemma with an informal proof:

Lemma 3. For any point p on a convex surface S that is contained in the interior of the unit

sphere, there exists a point v on the unit sphere, such that |p − v| = mins∈S |s − v|, i.e. p is

the nearest point to v on S.

Proof. Consider the plane T tangent to p. As S is convex, all of S is on one side of T . Project

a ray r going out of the surface S at point p, in the direction perpendicular to T . r intersects

the unit sphere at exactly one point v.
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(a) Coverage of the default SFCNN lattice for
point clouds in ModelNet40’s training set. The
average is 69.0%.

(b) The average coverage of the ModelNet40
training clouds by 2-layer lattices, as a function
of the inner radius (while the outer radius is kept
at 1.0).

Figure 5.7: Coverage analysis for multi-layer icosahedral lattices.

Then any segment vs for any point s on the surface must intersect the plane T and thus be

at least as long as the segment vp.

5.8 Original Modifications to SFCNN

In addition to the rotation-invariant version of SFCNN discussed in Section 5.6.1, we introduce

two modifications of SFCNN that address the low lattice coverage, as discussed in Section 5.7.

Both modifications, referred to as 3d and onion, keep all the key ideas of the basic SFCNN.

They both introduce lattice points inside the unit sphere, in order to capture the input points

usually dropped by the basic SFCNN (which tend to lie close to the origin). The difference

between the 3d and onion models lies in how the features from lattice points at different

depths are aggregated.

Both approaches introduce the new lattice points by reusing the subdivided icosahedra at

smaller scales. This choice was made to preserve the (approximate) uniformity and (approx-

imate) rotation invariance guaranteed by the subdivided icosahedra – the reason why that

lattice shape was chosen over others in the first place by the authors of SFCNN [5].
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5.8.1 The onion SFCNN

The onion approach introduces multiple identical lattices of different radiuses. The projection

step is performed as usual for each of the lattices separately. Then the feature vectors are

concatenated over all lattices and assigned to the primary lattice, while all other lattices are

discarded. The architecture proceeds as usual from there.

5.8.1.1 Further Work

Having identical layers of different radii stands in contradiction with the uniformity goals that

the SFCNN tries to accomplish by choosing to work with the icosahedral lattice. The inner

layers cover the 3D space more densely, as the same number of vertices is compressed into a

smaller surface. The way to fix this is to have smaller layers be subdivided less finely.

For simplicity, let us assume we have two layers, where the inner one has been subdivided one

fewer time. How do we aggregate the information from the two layers? Two natural solutions,

not evaluated in this project, are:

1. Concatenate the features from the inner layer after performing one substage of the

convolution stage (after which the outer layer becomes as coarse as the inner one has

been to begin with).

2. Concatenate the features from the inner layer to the corresponding vertices in the outer

layer, and for the high-subdivision vertices in the outer layer, instead use the averaged

feature vectors from the two adjacent low-subdivision vertices. This can be generalised

to when the difference in the number of subdivisions between the two layers is higher

than 1 – the average will just have to be taken over more than two vertices.

5.8.2 The 3d SFCNN

The 3d approach introduces a single ‘3d’ lattice with radially-directed edges in addition to

the original surface-directed edges.

The lattice we use is composed of identical copies of the original icosahedral lattice (‘layers’),
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with edges connecting corresponding vertices of any pair of adjacent layers. The subdivision

levels are set as in the original lattice, i.e. the progression from fine to coarse occurs only

inside each layer, and not in the radial dimension.

What we mean by ‘progression from fine to coarse in the radial dimension’ is the idea of every

other icosahedral layer being dropped out at the end of each substage. We choose not to

do this because having too many layers would prohibitively increase the size of the model in

memory. At 2 layers, we were already limited to using a batch size of 8 for training.

5.8.2.1 Further Work

The same uniformity issue can be raised as for the onion SFCNN (see Section 5.8.1.1). We

have come up with two ways to combine adjacent layers of different subdivision levels, which

roughly correspond to the two solutions suggested for the onion SFCNN:

1. The coarser inner layer could have edges going only to the corresponding vertices in the

finer outer layer.

2. The coarser inner layer’s vertex v could have edges going to the corresponding v′ in the

outer layer, but also all vertices u of the finer outer layer, for which v′ is the nearest

vertex at its subdivision level. Edges of the latter kind would gradually disappear as

the whole lattice undergoes sparsification.

Again, we leave evaluating those ideas as future work.

5.8.3 Choice of Layer Radii

For both the 3d and onion extensions, we decided to use two layers, the outer with radius 1.0

(i.e. the same lattice as used in the basic SFCNN), and the inner one with radius optimised

for maximising the total lattice coverage of the ModelNet40 training clouds.

We decided to limit ourselves to two layers. If we kept adding more layers, we would be

observing quickly diminishing returns in terms of point cloud coverage, while the training

batch size would have to be decreased significantly.
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The optimisation of the inner layer’s radius was a simple exhaustive search for the best inner

radius, with step size 0.01. A set of 400 ModelNet40 clouds (10 per class) was used. The

optimisation returns an inner layer radius of 0.47, which yields 86.8%±9.8% average coverage

as compared to the single-layer lattice’s average coverage of 69.0%±16.5%. The optimisation

is illustrated in Fig. 5.7b.
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Experiments and Results

6.1 Rotated ModelNet40 classification benchmarks

A popular choice in studies of rotation-robust models is to use not only the basic ModelNet40

dataset, but also rotated copies of its models, both for training and testing.

In the original SFCNN paper [5], the authors compute the accuracy of their classifier in three

settings: z/z, z/SO(3), SO(3)/SO(3). z denotes the set of rotations about the z axis, SO(3)

denotes the set of all 3D rotations, and the X/Y notation indicates that the set X was used

to augment the training set of clouds, while the set Y was used to augment the test set.

It is straightforward to see that z/SO(3) is an indicator of rotation-robustness, as it tests

a model on data rotated in an unseen way, compared to data in the training distribution.

Alternatively, one could look at metrics such as id/SO(3) or id/z, where id (identity) represents

no augmentation. We choose to stick with the metrics used in [5].

Models robust to rotations are also more likely to perform well at the z/z and SO(3)/SO(3)

benchmarks, because the test-time rotations are still not exactly ones that have been pre-

viously seen. Also, robustness or invariance to rotations effectively shrinks the input space,

which generally makes the learning easier.

85
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The z-rotations are generated by sampling the rotation angle uniformly from [0, 2π). For

the SO(3) rotations, three angles are sampled, α, β, γ, and the final rotation is taken to be

Rzγ ◦ R
y
β ◦ R

x
α, where Rxα denotes the rotation about the x-axis by angle α, etc. Such a

representation of rotations is known as extrinsic Euler Angles.

6.2 Hyperparameter Search for the SFCNN

There is a multitude of hyperparameters to be set when training an SFCNN model, both for

the optimiser – we used the Adam optimiser [26], following the original paper [5] – and for

the SFCNN model itself. In the original SFCNN paper, Rao et al. provide values they had

used for most of the hyperparameters.

To determine the best hyperparameter values, we have implemented and run a partial grid

search. Partial indicates that, if Di denotes the finite set of values we wanted to try for

the ith hyperparameter, then our search has only covered a subset of the Cartesian product∏
iDi. Smaller groups of related hyperparameters (e.g. base learning rate and learning rate

decay) would be subjected to an exhaustive grid search and then fixed, whereafter further

hyperparameters would be optimised. Every Di had each of its values evaluated at least once.

The hyperparameter values were selected by optimising the z/z classification accuracy (see

Section 6.1 for meaning of z/z). Each model was trained for a fixed time duration (2 hours).

Training each model until convergence would have been preferable but was not feasible for

this project (as was the case with a complete grid search, as opposed to partial).

Our hyperparameter optimisation process and outcomes are summarised in Table 6.1. We

have opted to always use largest batch size allowed by our hardware, which was 32 for the

small model (K = 4, B = 2) and 12 for the large model (K = 8, B = 3).

6.3 Implementation Tools and Details

Our primary development framework was Python 3 and Tensorflow 1.8 [50].
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name meaning reported used grid-search tested

K SFCNN width 4b, 8t 4 8

B SFCNN depth 2b, 3t 2 3

k SFCNN subcloud size 16 16 —

non-local layer instantiation of n.l. layer — Gaussian —

epsilon Adam hyperparam1 — 10−4 10−3, 10−2

lr base initial learning rate 10−3 10−4 10−7, 10−6, 10−5, 10−3

lr min minimum learning rate — 10−8 —

lr decay rate learning rate decay rate 0.8 0.9 0.6, 0.8

lr decay steps steps between l.r. decays 20e 20 —

weight decay Adam hyperparam2 10−5 10−5 10−4

jitter scale of input noise — 0.0 0.01, 0.05

Table 6.1: List of hyperparameters for SFCNN training. ‘reported’ indicates what value, if
any, was reported to be used in the original paper [5]. ‘used’ indicates the value that we
used for our evaluation. ‘grid-search tested’ indicates the set of values we have tried in our
hyperparameter grid search, other than the value in the ‘used’ column.
b,t The b and t annotations, next to reported values for K and B, correspond to ‘baseline’ and
‘top-performing’, respectively.
e The value of lr decay steps is set in epochs.
1 The epsilon is used by Adam to avoid division by zero in its formula for weight update. Its
magnitude affects the rate of weight updates.
2 The weight decay parameter controls the strength of L2 regularisation, a standard deep-
learning method that helps avoiding overfitting. [58]
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Filename Purpose

sfcnn.py The SFCNN model definition

subdivided lattice.py SFCNN model – helper methods related to the lattice

setting baseline.py1 An example SFCNN configuration

lattice coverage.py Lattice coverage computation

create jobs.py Hyperparameter grid search

create setting.py Hyperparameter grid search

grid search.py Hyperparameter grid search

subdivided lattice test.py Tests for debugging the SFCNN implementation

Table 6.2: Overview of the code written for the SFCNN study. All files written fully by the
dissertation’s author, 1except setting baseline.py adapted from pre-existing PointCNN
code.

We have implemented the SFCNN model entirely from scratch, based on the paper by Rao

et al. [5], as we have not succeeded at obtaining a reference implementation from the original

authors. We have adapted pre-existing PointCNN training and evaluation code (from our

research group’s repository) for use with the SFCNN.

The essential code that we have authored for the project is attached with this dissertation

and an overview of the files is presented in Table 6.2.

6.4 Results

We trained our implementation of SFCNN on the ModelNet40 dataset, along with the onion

and 3d versions of it. The model with stronger rotation invariance described in Section 5.6.1,

referred to as invariant, was also trained.

The Adam optimiser was used with cross-entropy loss. The hyperparameter values listed in

the ‘used’ column of Table 6.1 were applied for all models. Each of the SFCNN models has

approximately 4.4M parameters, and takes about 180k steps to converge, which corresponds

to 585 epochs. This takes about 14 hours on a single NVIDIA Titan V GPU.

Training the basic small model with batch size of 32, or the onion/3d model with batch size

16, takes under 12GB of GPU RAM. The memory bottleneck comes from the size of the most

subdivided lattice – for the onion/3d models, the lattice is twice as big, and thus the batch
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model z/z SO(3)/SO(3) z/SO(3)

SFCNN (K = 8, B = 3) – reported in [5] 91.4% 90.1% 84.8%

SFCNN (K = 4, B = 2) – reported in [5] 90.2% unknown 83.2%

SFCNN (K = 4, B = 2) – ours, baseline 85.1% 84.2% 80.8%

SFCNN (K = 4, B = 2) – ours, invariant 86.0% 84.3% 80.9%

SFCNN (K = 4, B = 2) – ours, onion 85.3% 84.8% 79.2%

SFCNN (K = 4, B = 2) – ours, 3d 85.0% 83.7% 79.2%

Table 6.3: Classification accuracy of SFCNN variants on ModelNet40. The top two rows
present values reported by Rao et al. [5]. The remaining rows are results obtained by our
implementations, where z/SO(3) results were measured after 180k training steps, while z/z
and SO(3)/SO(3) results were cherry-picked after the models converged.

size needs to be decreased by a factor of two, for the model to fit in memory.

The classification accuracy of our models on ModelNet40 is summarised in Table 6.3 and

compared to the values reported by Rao et al. [5].

The results obtained by our implementation of the SFCNN are below the accuracies reported

by Rao et al. [5]. This is, likely, a result of architectural and hyperparameter differences,

caused either by our simplifications, or the details of the original implementation missing

from the paper:

• The original paper reports use of ‘voting trick’ to boost performance. It is unclear what

exactly this refers to, and we have not been able to reproduce the ‘voting trick’.

• The original paper reports use of an additional ‘invertibility’ loss to improve training of

the projection module. Their ablation tests, attribute an improvement of about 1% to

the use of that loss, which we have omitted.

• The original paper does not specify what loss was used to train the model. Possibly,

combining cross-entropy loss with other losses, such as triplet or pairwise, could improve

performance.

• The original paper does not specify the type of Non-Local layer used. While the paper

on Non-Local Networks [53] reports that the instantiation choice does not have much

effect on performance of Non-Local-Networks (composed of multiple Non-Local layers),
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perhaps the choice is more influential when only a single Non-Local layer is present, as

in the SFCNN.

• The original paper does not specify all training hyperparameters, for example the initial

learning rate of Adam, or the Adam epsilon parameter. It is likely that a more exhaustive

hyperparameter search would find a better configuration than our partial grid search

did.

The invariant model outperforms our baseline on all benchmarks, with most significant im-

provement at the z/z category. Performance of the onion and 3d models is comparable to

that of the basic SFCNN. The onion model slightly outperforms the baseline model on the

z/z and SO(3)/SO(3) benchmarks.

The scores of the invariant model demonstrate that its higher robustness is an advantage

that outweighs the loss of information that occurs when the (x, y, z) coordinates are replaced

with the lossy 2D features (refer to Section 5.6.1). Furthermore, the model is confirmed to

not be exactly invariant – otherwise, its scores at all benchmarks would be equal, as has been

observed e.g. for the Rigorously Rotation Invariant model by Chen et al. [39].

The 3d model consistently performs slightly worse than the baseline, even though it consumes

more points from the input clouds, thanks to its added icosahedral layer. That suggests that

the way in which the data is aggregated is not optimal. We note that the convolutional step

treats all lattice neighbours of a vertex symmetrically – regardless of whether the edge to

that neighbour is oriented radially, or perpendicularly to the sphere’s radius. We conjecture

that the network would benefit from introducing a separate convolution kernel for the ra-

dial connections. The cost of this modification would be an increased number of trainable

parameters.

The onion model performing comparably to the baseline indicates that the additional infor-

mation it obtains is either not useful for classification, or it is wasted due to the architecture’s

design.
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Review of the Project

7.1 Contributions

As part of the project, we have contributed the following original ideas, recalled below.

Rotation robustness benchmarks. We have designed three rotation robustness bench-

marks for point cloud descriptors (or indeed any 3D object descriptors). Each provides a

different kind of insight into how the descriptor reacts to rotations. The benchmark scores

can be visualised on easy-to-read polar plots. The details can be found in Section 4.5.

The exactly rotation-invariant version of SFCNN. We have designed a simple mod-

ification for the SFCNN model, that makes it exactly invariant to all rotations in SO(3)

(under some idealistic assumptions about the lattice). We provide details and a proof of that

invariance in Section 5.6.1, and an evaluation of the model in Chapter 6.

3d and onion modifications to the SFCNN. We have noticed that the SFCNN’s output

only depends on some of the input points. The phenomenon was confirmed quantitatively

on the ModelNet40 dataset, and we proposed two related modifications to the model in

Section 5.8. The modifications were implemented, and their performance compared to the

baseline SFCNN in Chapter 6.
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Pair augmentation. A generic rotation augmentation method, designed for losses such as

triplet loss, which rate an entire input batch as a whole. Pair augmentation is described in

Section 4.7.6.

We plan to open-source our implementation of SFCNN to help the scientific community.

7.2 Directions for Future Work

Several relevant opportunities for research, detailed below, remain unexplored by our project.

Generalisation of augmentation methods to SO(3). Our investigation of data aug-

mentation was limited to z-axis rotations only. All the methods can be easily generalised

to cover all of SO(3) instead. The rotation robustness benchmarks (Section 4.5) can also be

generalised. It is not obvious whether the augmentation methods would rank the same way

if generalised to SO(3).

Recalling the key difference between discr-90 and discr-45, it would also be interesting to

see how finely SO(3) needs to be sampled in a discrete distribution for it yield robustness

comparable to that obtained using the continuous uniform distribution.

Evaluating pair augmentation further. The pair augmentation idea describes a general

framework with two parameters: the base distribution and the distribution used to obtain the

second rotation in a pair. We have only tested pair augmentation with a uniform base distri-

bution, and a deterministic 90◦ rotation used to generate the second rotation. To determine

the validity of pair augmentation with more certainty, more tests should be performed using

different distribution pairs.

More datasets and architectures. The augmentation methods could be compared for

other architectures than the PointCNN, and both the augmented models and the SFCNN

could be applied to more datasets, to better understand their strengths and weaknesses.

To understand how the rotation-robustness benchmark scores translate to performance on

real tasks, the PointCNN models trained with augmentation could be subjected to the same
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evaluation as the basic model was, testing the localisation success rate of the NSM localisation

algorithm (see Section 4.1.3).

Applying the SFCNN to robotics datasets, such as The Newer College Dataset [1], where the

segments to be described tend to have different shapes from those encountered in ModelNet40,

would be interesting. Furthermore, other standard 3D object processing benchmarks than the

ModelNet40 classification task, could also be used for evaluation of the SFCNN, such as the

SHREC’17 retrieval task [59]. contest [59].

Reproducing the SFCNN classification accuracy reported in the original paper [5].

Two elements mentioned in the original paper, but omitted in our project, should be investi-

gated: the voting trick to boost classification accuracy, and the ‘invertibility constraint’ loss.

Additionally, a broader hyperparameter search could be performed. Those actions should

provide more certainty whether the results from [5] can be reliably reproduced.

Further experiments on the invariant variant of the SFCNN. Instead of using the

lossy 2D features (
√
x2 + y2, z) to ensure invariance, other choices of features could be eval-

uated, such as the lossless Rigorously Rotation Invariant features [39].

Further experiments on the onion and 3d modifications. As detailed in Sections 5.8.1.1

and 5.8.2.1, implementations with coarser inner layers seem to have theoretical advantages

(uniformity), and would be interesting to test.

Furthermore, models with more than two icosahedral layers could be investigated to under-

stand the relationship between lattice coverage and model performance.

As discussed in Section 6.4, use of a separate convolutional kernel for the radially-oriented

edges of the 3d lattice, seems to be a promising idea.

Another change that could be tried is increasing the channel count of the onion network, as

currently the network pushes the information from both lattices into the number of channels

usually used for a single lattice. This is a possible reason for why the extra information

captured by the onion network’s projection module does not yield more benefit.
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Finally, the onion/3d multi-layer design could be combined with the 2D features used by the

invariant model. This seems promising, as both the onion and invariant modifications, on

their own, showed improvements over the baseline.
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